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1. Introduction

This review deals with the relation between inter-
molecular potentials and the spectra of van der Waals
molecules. Intermolecular potentials cannot be mea-
sured directly, but the intermolecularsor van der
Waalssmodes of a van der Waals molecule depend

directly and sensitively on the potential that holds
such a complex together. As the intermolecular forces
are rather weak, these van der Waals modes have
large amplitudes and are very soft: frequencies are
a few tens of reciprocal centimeters for complexes
with nonpolar monomers to a few hundreds for
hydrogen-bonded complexes. Experimentally the
modes are observed directly in laser-based far-
infrared spectroscopy,1-5 as sidebands in the mid-
IR,6,7 and in the UV.8 Often van der Waals molecules
are observed in cold supersonic molecular beams, but
also infrared spectroscopy of cold gases9 can give
useful information.

In high-resolution laser spectra, the line positions
are usually determined in as many as six or more
decimal digits. When using such data to probe the
intermolecular potential, one does not wish to sacri-
fice too much of this precision, which implies that one
must solve nearly exactly the Schrödinger equation
to obtain the bound quantum levels of the complex
from a given potential surface. Standard methods of
rovibrational analysis based on the harmonic oscil-
lator-rigid rotor model are not applicable because
of the large-amplitude motions and, in most cases,
tunneling between multiple minima on the potential
surface. Hence, the usual assignment and fitting of
the spectra in terms of (fundamental) vibrational
frequencies (band origins) and rotational, distortion,
and Coriolis coupling constants is often not possible.

We will start with an overview of the computa-
tional methods leading to ab initio spectra that may
be compared directly with experimental spectra. This
overview is rather brief; for mathematical details, we
refer to two recent reviews.10,11 Then we will discuss
some examples of the synergy between theory and
experiment. The first example, Ar-CH4, illustrates
that for complexes with moderately hindered internal
rotations, the spectrum shows a complicated, ir-
regular structure. The standard procedure to assign
and fit the rotational structure in the high-resolution
spectrum with the aid of a semirigid rotor Hamilton-
ian fails completely in this case. Only after an ab
initio spectrum became available, it was possible to
interpret the infrared spectrum measured a few years
earlier. At the same time, this confirmed the accuracy
of the ab initio Ar-CH4 potential. The second ex-
ample, the water dimer, is a convincing case of the
use of experimental data to probe intermolecular
potentials. The measured dimer spectrum has been
employed, via the theory, to discriminate between
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high- and low-quality empirical and ab initio water
potentials. Furthermore, a semiempirical potential
has been obtained from a fit of the spectral data, and
the same data were used for improving the best
available ab initio water pair potential. Our third
example, the water trimer, shows that also for a more
structured hydrogen-bonded complex it may be nec-
essary to abandon the standard rigid rotor Hamilto-
nian for a fit of the rotational and tunneling structure
in the experimental spectrum. Instead, a new effec-

tive Hamiltonian has been derived which explicitly
takes into account the occurrence of the soft and
coupled internal rotations and tunneling flips of the
monomers in the trimer. We also describe the use of
the trimer spectrum in further tests of the water pair
potential and of the nonadditive three-body interac-
tions. Meanwhile, the combination of theory and
experiment provides useful insights into the hydrogen-
bond network rearrangement processes which occur
in these water clusters but also in liquid water.

Finally, we present an overview of the recent
literaturessince the last Chemical Reviews issue on
van der Waals molecules in 1994. As the number of
new van der Waals and hydrogen-bonded complexes
identified experimentally or studied via ab initio
calculations is very rapidly expanding, we focus on
some prototype systems which have received the most
attention and for which the development of theory
and experiment have gone hand in hand.

2. Calculation of Spectra of van der Waals
Molecules

The softness of van der Waals modes is in contrast
to the vibrational modes in chemically bound mol-
ecules, which usually lie in the mid-infrared. Another
difference between chemically bound and van der
Waals bound molecules is that in the former the
different equivalent minima on the potential-energy
surface are usually well separated by large energy
barriers. van der Waals molecules, on the other hand,
show quite often considerable tunneling from one
equivalent minimum to the other, indicating that the
barriers between the minima are not large. These
physical observations have important consequences
for the theoretical study of the spectroscopy of van
der Waals molecules. Let us first recall that the
theoretical description of the rovibrational spectra of
‘classical’ molecules usually departs from a single
well-defined equilibrium geometry. By means of the
Eckart conditions12 and the knowledge of the equi-
librium coordinates, a body-fixed frame13 can be
introduced. The use of such an Eckart frame de-
couples as much as possible the rotations from the
vibrations. In this frame one describes the displace-
ments of the nuclei away from their equilibrium
positions; the linearization of these motions leads to
the well-known GF method.14 The Eckart-GF ap-
proach breaks down completely for van der Waals
molecules because of the two facts just mentioned:
(i) these molecules do not have well-separated equi-
libria and (ii) the rovibrational motions are not small
enough for a linearization of the coordinates to be
meaningful.

2.1. Coordinates; Kinetic and Potential Energy

As in the case of ‘normal’ molecules, one starts the
quantum mechanical study of van der Waals mol-
ecules by assuming the Born-Oppenheimer separa-
tion between the nuclear and electronic motions. In
solving the nuclear motion problem, one first sepa-
rates off the center of mass motion of the total
complex (the van der Waals molecule). This yields
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three linear conditions, and assuming that the sys-
tem consists of N nuclei, one thus decomposes the
3N-dimensional configuration space into a direct sum
of a 3- and a (3N - 3)-dimensional linear subspace.
The former linear space is associated with the
translational motion of the complex as a whole and
the latter with the rovibrational motions of the
complex. In chemically bound molecules, the rota-
tional motion is then decoupled from the vibrations
by means of the Eckart equations (ref 15, p 208),
which leads to 3N - 6 internal coordinates. For lack
of a single well-defined minimum, the Eckart condi-
tions are usually not applicable in van der Waals
molecules. However, transformation to a body-fixed
frame10,16,17 unveils the term in the kinetic-energy
operator that describes the Coriolis coupling between
the overall rotation and the internal motions of the
complex. In first instance one may neglect this
coupling, thus separating the external from the
internal motions of the complex. In a second step the
Coriolis coupling may be reintroduced, e.g., in per-
turbation theory. Even with neglect of the Coriolis
interaction, the remaining number of degrees of
freedom is still considerable in most van der Waals
molecules, so that an exact solution of the Schröd-
inger equation for the rovibrational motion is still out
of the question. Other approximations must be
introduced.

The approximation most widely applied is the
assumption that the monomers constituting the
complex are rigid. This approximation is in fact
equivalent to introducing a set of nonlinear con-
straints and thus gives rise to a nonlinear subspace
M of the configuration space. The Schrödinger equa-
tion must be solved on M. Therefore, one is faced with
the following problems: (i) finding a suitable set of
coordinates q ) (q1, q2,...) for M, (ii) expressing the
kinetic energy in these coordinates, and (iii) finding
the potential-energy function on all of M. The last
problem arises due to the fact that linearization of
the coordinates is physically unacceptable: a Taylor
expansion of the potential around a certain point of
M will not do. First and higher derivatives of the
potential at a single point of M are of no use.

The second of these problems, i.e., finding the
kinetic energy in the generalized coordinates q, is a
standard textbook problem. One defines the metric
tensor G by

where mv is the mass of nucleus v and rνR is its Rth
Cartesian component with respect to an arbitrary
space-fixed frame. The classical kinetic energy can
concisely be written as

Defining as usual the linear momentum pi conju-
gate to qi by pi ≡ ∂T/∂q̆i, so that p ) Gq3 , we find

that the classical kinetic energy can also be written
as

The Laplace operator in generalized coordinates is
(see for instance ref 18, p 174)

where g is det(G) and Gij is the (i, j) element of G-1.
Podolsky19 pointed out long ago that the proper
quantum mechanical kinetic-energy operator is

with the Laplacian (2). Let us define pj ) -ip∂/∂qj,
and since, as is shown in Appendix A,

we may write

where p† stands for the row vector (p1
†,p2

†,...). Note
that this quantum mechanical expression for T̂ has
a strong resemblance to the classical Hamiltonian of
eq 1. We also show in Appendix A that (pj

†)† ) pj.
This latter relation is very convenient in matrix-
element-based solution methods of the Schrödinger
equation, because application of the turnover rule
shows that matrix elements of T̂ are easy to calcu-
late: in bra and ket we must simply apply pj )
-ip∂/∂qj. This was pointed out earlier by Chapuisat
et al.20 and used extensively in refs 21 and 22.

A general solution to the first problem, the choice
of suitable coordinates for M, is probably impossible,
because it depends very much on the nature of the
van der Waals molecule under study; one must decide
for each case separately what the most convenient
coordinates are. The most natural choicesthe Car-
tesian components of the mass centers and the Euler
angles (see Appendix B) of all the monomers with
respect to the same space-fixed framesis not very
convenient because it is generally difficult to express
the interaction potential in these coordinates.

In the case of two rigid molecules with similar
masses, A and B, a suitable coordinate system is
obtained by embedding a frame with its origin at the
mass center of the dimer such that the z-axis coin-
cides with RB. This vector points from the center of
mass (c.m.) of A to the c.m. of B. Since only the two
spherical polar angles of RB with respect to a space-
fixed frame enter its definition, it is a two-angle
embedded frame. The polar angles of RB, together with
the Euler angles of A and B with respect to the two-
angle embedded frame, form a set of angular coor-
dinates. The kinetic energy was first obtained by
explicit transformation of the Cartesian ∇2 to this
system of coordinates.23 Later10 the metric tensor G

Gij ) ∑
ν)1

N

mv ∑
R)1

3 ∂rνR

∂qi

∂rνR

∂qj

T ) 1
2
q3 T

Gq3 with q3 ≡ dq
dt

T ) 1
2
pT

G
-1p (1)

∇2 ) g-1/2∑
ij

∂

∂qi

g1/2Gij ∂

∂qj

(2)

T̂ ) -1
2

p2∇2

pi
† ) g-1/2pig

1/2 (3)

T̂ ) 1
2
p†

G
-1p (4)
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was derived and inserted into the Podolsky formula;
the two derivations give identical final results. Note
that embedded frames can also be useful when the
rigidity of the monomers is relaxed. For example, Qiu
et al.,24 in a recent calculation on the HCl dimer, use
the two-angle embedded frame and introduce the two
intramonomer H-Cl distances among the degrees of
freedom.

In strongly asymmetric dimers, as for instance the
benzene-argon complex,25,26 it can be convenient to
fix a frame to one monomer, for example to the
benzene. The Euler angles of the monomer frame and
the coordinates of the position vector of argon with
respect to the monomer frame are the coordinates to
be considered. The kinetic energy was derived di-
rectly in refs 25 and 26 and via the metric tensor in
10. See also refs 16, 17, and 27-29 for recent
discussions of kinetic-energy operators.

The third problem, obtaining the potential on all
of M, can be solved by ab initio electronic structure
calculations on a finite grid of points of M followed
by a fit or interpolation. One may use perturbation
methods, see for instance Jeziorski et al.,30 or super-
molecule methods.31 Using the latter method, one
must not forget to correct for basis set superposition
errors.32 Alternatively, one may try to invert spec-
troscopic data and work backward to the potential.
In practice, this is extremely difficult without any
help from electronic structure calculations. Usually
one employs a hybrid method, with some input from
calculations and some free parameters that are fit
to the experimental spectrum. Recent examples of
potentials obtained by this approach are for He-
CO,33 the water dimer,34 and Ne-HF.35

2.2. Calculation of the
Vibration−Rotation−Tunneling States

Once we have defined the coordinates and set up
the Hamiltonian, we are ready to solve the Schröd-
inger equation. Its solutions are the rovibrational
states which usually exhibit tunneling from one
minimum to the other. Methods for the computation
of these so-called vibration-rotation-tunneling (VRT)
states36 in van der Waals molecules can be classified
as variational and nonvariational. In the linear
variational methods, one chooses an expansion basis
of square-integrable functions, the functional depen-
dence of which depends obviously on the choice of the
coordinates. Usually one employs product functions:
(products of) Wigner D-matrices37 for the Euler
angles multiplied by functions for the radial coordi-
nate(s). Note that D-matrices are a generalization of
spherical harmonic functions. In the case of closed-
shell linear molecules, one Euler angle is zero and
the D-matrix ‘shrinks’ to a spherical harmonic func-
tion.37

For the radial basis, one may use analytic func-
tions, such as associated Laguerre functions,38,39 or
distributed Gaussians,40,41 or numerical functions
defined on a grid of R points.42

The traditional nonvariational method to obtain
the VRT states of dimers is the close-coupling method,
as implemented for scattering calculations.43,44 The
angular basis functions used in such calculations are

also D-matrices or spherical harmonic functions. The
radial functions are not expanded in a basis, however,
but they are written as the R-dependent ‘coefficients’
in the expansion of the exact wave function in the
complete set of angular (channel) functions. When
this expansion is substituted into the Schrödinger
equation, one obtains a set of coupled differential
equations for the radial functions of the different
channels.45

Nonvariational approaches which are based on
discrete representations of the wave function are the
discrete variable representation (DVR)46-49 and the
collocation method.50-54 A major advantage of the
latter methods is that they are easy to program. This
also holds for the pseudospectral method,55,56 which
usessjust as DVRstwo basis sets: one in spectral
(function) space and one in ‘grid space’. A larger
number of grid points xp than functions un is used.
The collocation matrix Rpn ≡ un(xp) allows switching
from the spectral to the grid representation. The
inverse transformation is carried out by means of a
generalized inverse, which provides the best trans-
formation in the least-squares sense. The use of a
grid is particularly efficient for evaluating the action
of a Hamiltonian on a wave function in spectral
space. The timing of most iterative diagonalization
methods is dominated by the latter matrix-vector
multiply.

Finally, we mention the diffusion Monte Carlo
(DMC) method, originally designed for calculating
energies and wave functions of atomic and molecular
systems.57 The technique is computationally simple
and roughly scales linearly with size but has the
disadvantage that only ground states can be com-
puted straightforwardly. The rigid-body version of
DMC58 rigorously factors out the high-frequency
intramolecular vibrations of the monomers, so that
in this approach, too, only the rovibrational motions
of the whole monomers are considered. It has been
demonstrated that rigid-body DMC is able to calcu-
late accurate energies with longer time steps than
conventional DMC.59,60

2.3. Symmetry Aspects
The multiple minima in the potential surface and

the large-amplitude vibrations make the concept of
a point groupswhich describes the symmetry of a
rigid bodysuseless for van der Waals molecules.
However, the following symmetry operations do still
apply: (i) permutations of identical nuclei, (ii) space-
inversion, and (iii) products of i and ii. It is legitimate
to consider all such possible permutation-inversions
(PIs), but since only a minority of them is physically
meaningful, this would lead to a group which is much
larger than necessary. Only a subset of the full PI
group gives rise to observable splittings: these are
the so-called ‘feasible’ PIs.61,62 We distinguish two
kinds of these: the first kind is equivalent to a
rotation of the molecule in isotropic space. In this
case, no energy barrier is surmounted. The second
kind of feasible PIs requires the tunneling through
some barrier, deforming the molecule to another
equivalent structure that is distinguished from the
earlier structure by the change in one or more
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internal coordinates. It is very hard to predict a priori
if an operation of the second kind is feasible. Detailed
experiments or elaborate calculations are required
to do so. Furthermore, whether an operation is
considered to be feasible depends on the resolution
of the measuring device. In most cases tunneling
through the barriers of van der Waals surfaces
(including hydrogen-bonding surfaces) gives rise to
observable splittings so that the corresponding per-
mutations are feasible. For instance, a cyclic permu-
tation of the three protons of a single ammonia
molecule is of the first kind but becomes of the second
kind in the ammonia dimer. This is because the
original and permuted structure are separated by a
barrier in the van der Waals potential. However, this
barrier is so low that the cyclic permutation remains
feasible in the dimer.

The PI group can be used for several purposes.
First, in the calculation of the VRT states, the
adaptation of the basis to the irreducible representa-
tions (irreps) of the PI group leads to a separation of
the Hamiltonian matrix into smaller blocks. In some
examples, such as (NH3)2,63,64 this simplification was
essential to make the calculations possible. Second,
since the VRT states are symmetry adapted and since
the dipole operator is invariant under all permuta-
tions of identical nuclei and antisymmetric under
space inversion E*, we obtain exact selection rules.
Finally, we note that also the nuclear spin functions
must be adapted to the permutations of (all) identical
nuclei. The spin functions are invariant under space
inversion. Since the nuclei are bosons (for integer
spin quantum number I) or fermions (for half-integer
I), it follows from the Pauli principle that the spatial
wave functions of the VRT states are explicitly
related, through their permutation symmetry, to the
occurrence of specific nuclear spin quantum numbers.
It is this relation that determines the nuclear spin
statistical weight15 of each VRT level.

2.4. Computation of the Spectrum
Once we have computed the VRT states, we can

compute the spectrum. In accordance with Fermi’s
golden rule and the multipole expansion of the laser
field, we must compute the square of transition dipole
matrix elements. In principle, the full dipole surface
of the van der Waals molecule arises here as the
operator. If one or more of the monomers have a fairly
large permanent electronic dipole, the dipole surface
may be approximated by applying a rotation to the
permanent moment. Consider, for instance, the dipole
surface of a rigid molecule with a monomer-fixed
frame that has Euler angles R, â, and γ with respect
to a reference frame (e.g., the frame of the laser or a
frame embedded in the complex). The dipole surface
may be approximated by

where µelec is the electronic dipole moment in the
monomer-fixed frame and R(R, â, γ) is the 3 × 3
rotation matrix describing the rotation of the latter
frame (see Appendix B). When the reference frame
is not the frame of the laser field, a further rotation
of µ(R, â, γ) is needed.

This approximation can be refined by introducing
induced dipole moments.65 When none of the mono-
mers has a permanent multipole, the dipole surface
is due to penetration, exchange, and dispersion
effects and may be computed by ab initio methods.66

Since the VRT levels are usually closely spaced, it
is common to include in the calculated far-infrared
spectrum simultaneously the effects of absorption
and stimulated emission and to assume that all
states are populated according to a Boltzmann dis-
tribution. The intensity is then given by eq 29 of ref
10.

3. Rovibrational Spectrum of Argon−Methane
A series of argon-XHn complexes has been studied

to date. The amplitude of the intermolecular vibra-
tional motion is particularly large in these complexes
due to the fact that the internal rotation involves
essentially only the motion of hydrogens. In the case
of Ar-HF,67,68 the hydrogen undergoes wide ampli-
tude bending excursions and the vibrationally aver-
aged structure changes wildly upon intermolecular
vibrational excitation. In Ar-H2O,69,70 the water
molecule undergoes hindered rotation within the
complex, as is also the case for Ar-NH3.71 Although
the moments of inertia become progressively larger
as we move down the series (more hydrogen atoms
are moving), the larger systems tend to be even more
delocalized, as the number of equivalent configura-
tions increases. The complex that completes the
above series, namely Ar-CH4, has been the subject
of numerous experimental and theoretical studies.

Traditional bulk methods used to determine po-
tentials for Ar-CH4 include the measurement and
fitting of diffusion coefficients,72-74 viscosities,75-77

second virial coefficients,78-81 and thermal diffusion
factors.82,83 This bulk data does not provide enough
detail for the determination of all of the features of
the associated multidimensional potential. The more
recent scattering experiments for Ar-CH4

84-87 pro-
vide more information on the potential anisotropy,
as do the results of rotational relaxation experi-
ments.88,89 Recent experimental work on this system
is by Chapman et al.,90 who have measured the state-
to-state integral cross sections for rotational excita-
tion of methane upon collision with argon. (Paren-
thetically it may be remarked that they performed91

the same kind of measurements for Ar-H2O.) The
comparison between this Ar-CH4 data and the
calculated results based upon the empirical potential
developed previously by Buck et al. from total dif-
ferential scattering85 and energy-loss measurements86

is quite reasonable, although there are still signifi-
cant differences for several of the cross sections.

Recently argon-methane was studied spectroscopi-
cally with rotational resolution.9,92,93 McKellar9 pre-
sented a mid-infrared spectrum at the 1994 Faraday
Discussion. This spectrum, measured in the bulk, lies
around the v3 mode (3019.5 cm-1) of the free methane
molecule. Miller,92 in his comment on the McKellar
presentation, showed a similar spectrum taken in the
molecular beam. Just as is the case for Ar-HF, Ar-
H2O, and Ar-NH3, the methane undergoes nearly
free rotation within the complex so that a rigid

µ(R, â, γ) ) R(R, â, γ)µelec
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molecule description is inappropriate for describing
the rotational states of the complex.

A number of ab initio studies of Ar-CH4 have also
been performed. The long-range dispersion coef-
ficients were reported by Fowler et al.,94 while more
recently Szczȩśniak et al.95 calculated a few slices
through the potential using MP2 methods with a
relatively small basis. The most complete study to
date is that of Heijmen et al.,96 who made use of
symmetry-adapted perturbation theory (SAPT) and
computed enough points on the surface to enable a
fit of the surface to an analytical potential. This
potential has been shown to reproduce much of the
experimental data that is currently available. In
particular, for the total differential scattering cross
sections of argon from methane, the results97 ob-
tained from this potential are in excellent agreement
with experiment. Also, the rotationally inelastic
integral cross sections96 are generally in good agree-
ment with the experimental values of Chapman et
al.90

In refs 98 and 99 the spectrum for the binary Ar-
CH4 complex was reported and assigned. The assign-
ment of the spectrum was made possible by carrying
out exact quantum calculations on the system on the
basis of the ab initio potential surface reported
previously.96 The effects of vibrational angular mo-
mentum in the v3 excited state were included in the
calculations. In the following we will briefly review
this work.

3.1. The Schro1dinger Equation and Its Solution
We begin by introducing the six coordinates that

enter the nuclear motion problem. The CH4 molecule
is assumed to be rigid and of tetrahedral symmetry,
i.e., it has the point group Td. Vector RB, which points
from the carbon atom to the argon, has spherical
polar angles â and R with respect to a space-fixed
frame eb ≡ (ebx, eby, ebz). We define a frame fB ) (fBx, fBy, fBz),
which has its z-axis along RB

See Appendix B for the definition of the matrices. A
frame gb fixed to methane is shown in Figure 1.
Explicitly,

This frame is right-handed and orthonormal (with
the appropriate unit of length) and has Euler angles
ω ) (ω1, ω2, ω3) with respect to fB, i.e.,

The ab initio potential96 V(R, Θ, Φ) contains the
spherical polar angles of RB with respect to the frame
gb. It is easy to show from eqs 5 and 7 that RB ) RB(-gbx

cos ω3 sin ω2 + gby sin ω3 sin ω2 + gbz cos ω2), so that
the spherical polar angles of RB with respect to gb are
Φ ) π - ω3 and Θ ) ω2. Note that the map of the
polar angle Φ f -Φ is a symmetry operation due to
the choice of positioning two protons in the xz-plane.
This symmetry simplifies the computations discussed
below. The body-fixed Hamiltonian10 describing the
complex can be written as

where T is the kinetic energy of CH4, Jtot is the total
angular momentum of the complex, J ≡ [Rz(R)Ry(â)]Τ

Jtot, j is the angular momentum operator of methane
(which has the usual space-fixed rigid rotor form),
and j2 ≡ j‚j. Finally, µAB is the reduced mass of the
Ar-CH4 complex. Note that Jtot and its projection Jz
on ebz are exact constants of the motion with conserved
quantum numbers J and M, respectively.

In the ground vibrational state of CH4, we simply
have the spherical top Hamiltonian for the free
methane, namely, T ) B0 j2. In the vibrationally
excited v3 mode, there is first-order Coriolis coupling
between the vibrational angular momentum lvib and
the body-fixed angular momentum jBF of methane.12

That is, when the molecule is in the v3 mode, the
kinetic energy T takes the form

Experimental values were used for the constants
entering the kinetic energy. They are B0 ) 5.2410356
and B3 ) 5.19970 cm-1 for the ground state100 and
the v3 excited101 state, respectively. The Coriolis
parameter ú3 was fixed101 at 0.05533, and the follow-
ing masses102 were used: 40Ar, 39.9627 amu; 1H,
1.007825 amu; and 12C, 12 amu.

As stated above, the potential V(R, Θ, Φ) ) V(R,
ω2, ω3) was obtained in ref 96 by means of the SAPT
method.103 Five intermolecular distances, ranging
from R ) 5 to 10 bohr, were considered and for each
distance six sets of polar angles. The Td symmetry
was used to section each sphere of constant R into
24 irreducible segments. The six sets of polar angles
covered such a segment. Long-range dispersion and
induction coefficients were computed separately and
held fixed in the analytic fit of the surface. The

fB ) ebRz(R)Ry(â) (5)

gb ) fBR(ω) ≡ fBRz(ω1)Ry(ω2)R(ω3) (7)

Figure 1. Molecule fixed frame for the Ar-CH4 complex.
Protons 1 and 2 are in the xz-plane above the xy-plane and
have negative and positive x-components, respectively.
Protons 3 and 4 are in the zy-plane below the xy-plane and
have negative and positive y-components, respectively. The
carbon atom is positioned at the origin.

H )

T + 1
2µABR2[-p2 ∂

∂R
R2 ∂

∂R
+ (Jtot)2 + j2 - 2j‚J] +

V(R, ω2, ω3) (8)

T ) B3j
2 - 2ú3B3l

vib‚jBF (9)
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angular part of both the long- and the short-range
interaction was expanded in a set of A1 tetrahedral
harmonics, i.e., linear combinations of spherical
harmonics transforming as A1 under Td. See Figure
2 for a cut through the surface for Φ ) 0°.

After having defined the Hamiltonian for the
nuclear motion of the Ar-CH4 complex, we turn to
the computation of its bound states. These were
obtained variationally and to that end a body-fixed
basis was used, namely

where we suppress J and M in the short-hand
notation on the left-hand side, since these quantum
numbers are constant throughout the calculations.

The functions Dmm′
(l) are elements of Wigner D-ma-

trices (symmetric top functions).37 Bound-state levels
were calculated for total angular momentum J up to
and including Jmax ) 7. Angular basis functions for
the CH4 monomer were included up to and including
jmax ) 12. The radial functions, øn(R), are Morse-type
oscillator functions;38 they were included through
nmax ) 10. In the case of methane in its ground
vibrational state, the basis of eq 10 is used as its
stands, while for the vibrationally excited states it
is multiplied by |v3, ml〉, thus tripling the dimension
of the Hamilton matrix. These v3 functions are
eigenfunctions of the operator (lvib)2 with eigenvalue
l(l + 1) with l ) 1 and of lz

vib with eigenvalues ml ) 1,
0, and -1, respectively. These eigenfunctions behave
in the usual manner under the step-up and step-
down operators l(

vib. It was assumed that the inter-
molecular potential is the same for CH4 in the ground
vibrational state and in the v3 excited state.

Figure 2. Cuts through the ab initio Ar-CH4 potential-energy surface (in cm-1) and the lowest A, F, and E state
rovibrational wave functions of Ar-CH4 at Φ ) 0°. The wave functions squared are shown (in 10-6 bohr-3); the degenerate
states have been averaged over their components. The A and F state wave functions have quantum numbers J ) K ) 0,
while the E state wave function has J ) 1 and K ) -1 or 1. The azimuthal angle Φ ) 0°. Note that Θ ) 54.74° corresponds
to a vertex position of argon (a linear C-H‚‚‚Ar configuration), Θ ) 125.26° to a facial position (between three C-H bonds),
and Θ ) 0° and 180° to edge positions (Ar, C, and two H atoms in one plane).

|n, j, k, K〉 )

[(2j + 1)(2J + 1)

32π3 ]1/2
øn(R)DKk

(j) (ω)*DMK
(J) (R, â, 0)*

(10)
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Since |K| is a reasonably good quantum number,
it is advantageous to use a basis that contains K
explicitly because it allows the calculation of the VRT
states to be performed in two steps. First, the off-
diagonal Coriolis interactions terms in j‚J were
neglected, which implies that K is an exact quantum
number and that levels with (K are degenerate. The
Hamiltonian was diagonalized in the basis of eq 10
for constant J and K, with K ranging from -min (J,
Kmax) through +min (J, Kmax). The maximum absolute
value of K was fixed at Kmax ) 3. In the second step
the off-diagonal Coriolis interaction terms in the
Hamiltonian are included, which mix functions with
different K. This Hamiltonian was diagonalized in
the basis formed by a truncated set of eigenfunctions
generated in the first step. In these dynamical
calculations the symmetry was not used explicitly,
but the resulting states are symmetry adapted, of
course.

Since we assume that, apart from weak Coriolis
coupling, the internal v3 vibrational mode of the CH4
monomer is decoupled from the intermolecular modes
i and i′, the frequency of the transition (υ ) 0, i, J f
υ3 ) 1, i′, J′) is given by

where Eυ,i
J denotes the energy of the state labeled by

(υ, i, J) with respect to the dissociation limit and vj3
is the monomer v3 transition frequency, which was
fixed101 at 3019.4883 cm-1.

In Table 1 we report the bound levels of the Ar-
CH4 complex for J ) 0, 1, and 2. The states in this
table are labeled by their symmetry, which was
assigned by inspection, and by the j, K, and n
quantum numbers of the dominant contributions,
where n refers to the intermolecular stretch. The A,
F, and E symmetries are associated with different
nuclear spin species. Figure 2 shows contour plots of
the lowest A, F, and E wave functions andsfor

comparisonsthe potential. We see that the A-state
is highly delocalized with a maximum amplitude not
quite in the global minimum of the potential but at
a slightly larger R-value. The potential well is rather
narrow, so that localization of the wave function in
this minimum would give a considerable increase of
kinetic energy, which explains the outward shift of
the position of maximum amplitude. The same ob-
servations can be made for the F-state, although the
density in the intermediate region, connecting the
global minima via the saddle point at Θ ) 0°, is
somewhat lower than that of the A-state. The E-state,
on the other hand, is completely localized near the
minimum. This is due to the fact that the first and
dominant anisotropic term in the potential (V3)
interacts in first order with this state; see ref 98 for
the group theoretical explanation why E-states in-
teract in first order while A and F states do not.

Figure 3 shows the energies of the lowest bound
states of each symmetry. It is clear from this energy-
level diagram that the K ) 0 states essentially follow
the free rotor energy pattern, namely, Ej ) Bj(j + 1),
and that j is a good approximate quantum number
for these states. This shows that the CH4 monomer
behaves like a slightly hindered rotor within the
complex. The E and F levels associated with j ) 2
and K ) 0 are split by 0.51 cm-1 under the influence
of the potential.

The levels of F symmetry with |K| > 0 are only
slightly split by the potential, the splitting being
approximately 0.1 cm-1. On the other hand, the E
levels with |K| > 0 are split by as much as 10-20
cm-1. Furthermore, the splitting for the E levels with
|K| ) 1 is nearly twice as large as that for |K| ) 2, in
agreement with the group theoretical analysis of ref
98. For J ) 2, for instance, this ratio is equal to 1.98.
From these results, we can conclude that |K| is a good
approximate quantum number. Although the A and
F states with different |K| are nearly degenerate,
there are clearly large differences for the E states

Table 1. Lowest Energy Levels of Ar-CH4 Calculated
from the Ab Initio SAPT Potentiala

j |K| n Γb J ) 0 J ) 1 J ) 2

0 0 0 A1,2 -90.473 -90.289 -89.922
1 0 0 F2,1 -81.738 -81.593 -81.295
1 1 0 F1,2 -80.645 -80.276
1 1 0 F2,1 -80.606 -80.169
2 1 0 E -68.702 -68.345
2 2 0 E -63.830
0 0 1 A1,2 -61.267 -61.097 -60.757
2 2 0 F2,1 -60.065
2 2 0 F1,2 -60.064
2 0 0 F2,1 -58.571 -58.499 -58.280
2 1 0 F1,2 -57.952 -57.561
2 0 0 E -58.065 -57.882 -57.517
2 1 0 F2,1 -57.857 -57.350
2 2 0 E -52.316
1 1 1 F1,2 -49.653 -49.309
1 1 1 F2,1 -49.647 -49.293
2 1 0 E -45.904 -45.550
1 0 1 F2,1 -45.885 -45.708 -45.355

a Energies are in cm-1, relative to the dissociation limit. The
CH4 monomer is in the vibrational ground state. b For the A
and F irreps, the first subscript on the symbol refers to states
with even J and the second to states with odd J.

Figure 3. Selection of energy levels of Ar-methane
corresponding to the lowest three rotational levels of free
CH4. The energy of the lowest J ) 0 level of the complex
(-90.473 cm-1) was added to the monomer levels. Note that
for |K| > 0, the F1 and F2 levels are nearly degenerate.

v(υ ) 0, J, i f υ3 ) 1, J′, i′) ) Eυ3)1,i′
J′ - Eυ)0,i

J + vj3

(11)
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owing to this first-order splitting. Therefore, the
conclusion that Ar-CH4 is an almost free internal
rotor, as suggested by the levels with K ) 0, has to
be qualified. The levels with |K| * 0 show that the
choice of a body-fixed embedding for the basis func-
tions is legitimate. Since the rotational constant of
methane and the splittings of the levels with different
K are of the same order of magnitude, we have here
one of the few cases where a van der Waals complex
is really intermediate between a rigid rotor and a free
internal rotor.

In a previous study104 Hutson and Thornley ob-
tained the bound levels of the Ar-CH4 complex from
close-coupling calculations. These authors applied the
semiempirical potential of Buck et al.86 (BKPS po-
tential) and found bound-state levels that are 4-5
cm-1 lower than in the work of ref 98. The cause of
this deviation is that the SAPT potential has a
shallower well than the BKPS potential. This is
illustrated by the well depth of the isotropic part,
which is 104.3 cm-1 for the SAPT potential, 12 cm-1

less than for the BKPS potential. From the A levels
listed in Table 1, the stretching frequency of Ar-CH4
is estimated to be 29 cm-1. This is approximately 4
cm-1 lower than the value reported in ref 104.

In Figure 4 we show the lowest bound-states levels
with J ) 1 for the ground state and with J ) 2 for
the case where the CH4 monomer is in the v3
vibrationally excited state. Since this v3 mode is triply
degenerate, the number of levels per interval is about
three times as large as that for the ground state, as
is clearly shown in Figure 4. Given that the v3 mode
is of F2 symmetry, all symmetry labels Γ change
according to the direct product Γ × F2 of the group
Td. For Γ ) A1 (or A2) and E, this direct product
results in one and two F states, respectively, while

for the F states the coupling with the v3 mode gives
one A, one E, and two F levels. We see the symmetry
labels for the total wave function and the dominant
j component in Figure 4. Particularly for the higher
levels, states with van der Waals components of
different symmetry are mixed. As was also the case
for the ground state, j, |K|, and n are approximately
good quantum numbers. The only exception is formed
by the two states of F symmetry near -57.6 and
-57.0 cm-1 with |K| ) 0 and 1, respectively, which
are mixed to a great extent. Note that the van der
Waals parts of these two states are of different
symmetry, viz. F and E, respectively. The Coriolis
coupling with the vibrational angular momentum of
CH4 affects the levels only by a relatively small
amount. Splittings are typically 1-2 cm-1 or less.

3.2. The Spectrum and Its Assignment
As described in the previous section, one has to

compute the square of transition dipole moments in
order to obtain spectral intensities. In the present
case, the transitions are from the ground vibrational
to the v3 excited mode of the methane simultaneous
with excitations of the intermolecular modes. The
laser field is by definition in the space-fixed (SF)
frame, and since the wave functions are expressed
in molecule-fixed (MF) basis functions, we must
transform

where Q stands for the normal modes of methane.
The assumption here is that µMF does not depend on
the interaction, i.e.,

The reduced matrix element µ10 is independent of
ml, and since one is usually only interested in relative
intensities, it is taken to be unity. The matrix
elements of the operator in eq 12 in the basis of eq
10 follow easily from the Wigner-Eckart theorem.37

As usual, the transition dipole matrix elements are
inserted into an expression for the intensities, see ref
10. The temperature of the beam was taken to be 1
K. In addition, the spin statistical weights105 enter
this expression and have been included in all the
calculated spectra, namely, 5, 5, 2, 3, and 3 for A1,
A2, E, F1, and F2, respectively. The dipole selection
rules are A1 T A2, E T E, and F1 T F2, i.e., the
nuclear spin species A, E, and F are conserved under
dipole transitions. The theoretical infrared spectrum
of Ar-CH4, calculated from the ab initio SAPT
potential, is presented in Figure 5b in the same
frequency range as the experimental spectrum shown
in Figure 5a.

All of the bands observed in the experimental
spectrum are reproduced in the theoretical spectrum
and were considered one at a time in ref 99. For this
purpose the various bands were labeled I-VII, see
Figure 5. The corresponding transitions are indicated
in Figure 4. From the theoretical calculations, we find
that the most intense feature in the spectrum,

Figure 4. Transitions between ground- and excited-state
levels of Ar-methane, leading to bands I-VII shown in
Figure 5. For clarity, we depicted only the ground-state
levels with J ) 1 (energy scale on the left-hand side) and
the v3 excited-state levels with J ) 2 (energy scale on the
right-hand side).

µ0
SF ) ∑

m′,m′′
D0m′

(1) (R, â, 0)*Dm′m′′
(1) (ω)*µm′′

MF(Q) (12)

〈υ3 ) 1, ml|µm′′
MF(Q)|υ ) 0〉 ) δml,m′′µ10 (13)
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namely, the broad band near the R(0) transition of
the monomer, primarily arises from the A states (j
) 0). As noted in the figure, there are also some
weaker transitions in this region, assigned to the E
states (j ) 2). Most of the other bands in the spectrum
are associated with the F states (j ) 1).

As an example of a more detailed comparison
between theory and experiment, we refer to Figure
6. It shows an expanded view of band II from 3017
to 3023 cm-1. This band is assigned to F states
corresponding to j′′ ) 1 and ∆j ) 0, correlating with
the Q branch of the methane monomer. The lower
panel shows the theoretical spectrum, obtained di-
rectly from the potential surface, along with the
assignments given above the individual lines. In the
upper panel, the experimental spectrum is compared
with the same calculated spectrum (inverted) that
has been shifted in absolute frequency to give the
best agreement with experiment. In this case, the
calculated spectrum had to be shifted by -0.311 cm-1

to match the experiment. Overall, the resulting
agreement is excellent, certainly sufficient to assign
most of the transitions in the experimental spectrum.
The frequency offsets needed to bring experiment and
theory into agreement and the line width data are
summarized in Table 1 of ref 99, also for the other
subbands. The offsets vary for the different subbands

between -0.11 and -0.68 cm-1. The other subbands
are detailed in ref 99.

It may be concluded that a detailed comparison
between the experimental near-infrared spectrum of
argon-methane and the results of a theoretical
calculation led to a definite assignment of many of
the bands. The spectrum is highly sensitive to the
anisotropy of the argon-methane potential surface,
and the agreement with the ab initio spectrum,
although not quantitative, is very good.

4. Water Pair Potential and Dimer Spectrum

Thirty years of classical Monte Carlo (MC) and
molecular dynamics (MD) simulations have provided
much insight into the microscopic behavior of liquid
water and ice. Yet, a quantitative statistical mechan-
ical description which explains the anomalous prop-
erties of water is still lacking. There are good reasons
to believe that this is mainly due to an insufficient
knowledge of the intermolecular potential needed for
the simulations. Ab initio calculations106-114 have
shown that the deviations of this potential from
pairwise additivity are substantial and that, in
particular, the three-body interactions are important.
Most of the simulations used ‘effective’ pair poten-
tials: simple empirically parametrized model poten-

Figure 5. (a) Broad scan of experimental infrared spec-
trum of Ar-methane. (b) Ab initio calculated spectrum at
T ) 1 K. The symmetry species is indicated; initial and
final states are of the same symmetry. Between parenthe-
ses is the symmetry of the van der Waals component of
the final state. The symbols p(j), q(j), and r(j) refer to
transitions from an initial state of certain j, the angular
momentum of the methane monomer.

Figure 6. (a) Experimental spectrum of Ar-methane in
the region 3017-3023 cm-1. The inverted stick spectrum
is the theoretical spectrum of Figure 5b, red shifted by
-0.311 cm-1. (b) Calculated spectrum (F states) in this
region (band II). Lines indicated by + symbols correspond
to |K|:1 f 1 transitions with ∆J ) +1, the leftmost one
being the R(1) line.
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tials in which the many-body interactions are rep-
resented implicitly. Some authors115,116 used so-called
polarizable potentials, which explicitly include the
many-body polarization (induction) effects. Even the
latter are based on simplified models, however.
Moreover, it was found in some of the ab initio
calculations107,113,114 that, in addition to the polariza-
tion effects, also the nonadditive exchange forces are
significant. It is therefore not surprising that the
results of simulations with these model potentials are
usually valid only for a restricted set of propertiess
often those to which the empirical parameters have
been fitsin a limited range of temperatures and
pressures. Simulations of more general validity will
have to start from the real water pair potential and
explicitly include the important three-body interac-
tions.

Very precise information about the pair and many-
body interactions can be extracted, in principle, from
the spectra of small water clusters. Such clusters
have been prepared in supersonic molecular beams
and extensively studied by microwave and (far-)-
infrared spectroscopy.117-147 Especially through the
work of the Saykally group at Berkeley, a systematic
set of high-resolution spectral data on water clusters,
from the dimer to the hexamer, has recently been
collected. The spectra of these very cold clusters
correspond directly to the transitions between their
quantum levels, without the statistical-thermody-
namical averaging that complicates the interpreta-
tion of experimental data for the condensed phases.
It was evident from the vibration-rotation-tunnel-
ing (VRT) level patterns observed in the spectra that
the dynamical processes found in liquid water,148-150

which involve the breaking and reconstruction of
hydrogen bonds, also occur in these clusters. Because
of the absence of thermal motions in the clusters, the
bond breaking is solely due to quantum mechanical
tunneling through the barriers in the potential that
separate multiple equivalent hydrogen-bonded equi-
librium structures. While the equilibrium geometries
of small water clusters can be reasonably well
predicted from fairly simple model potentials, it was
demonstrated144,151,152 that the VRT level splittings
form an extremely sensitive probe of the detailed
shape of the intermolecular potential surface. Hence,
the most critical test of the pair potentialsespecially
in the physically important attractive regionsis the
dimer spectrum, while the trimer spectrum probes
both the pair potential and the three-body forces. The
actual use of dimer spectroscopic data to test and
improve the water pair potential, and the methods
needed to perform such tests, form the subjects of the
present section of this review.

4.1. Tunneling Processes in the Water Dimer
The water dimer, along with the HF dimer, is a

textbook15 example of tunneling in hydrogen-bonded
systems. In such dimers, the monomers are free to
find orientations that maximize the strength of the
hydrogen bond and the dimer equilibrium geometries
may be considered as ideal hydrogen-bonded struc-
tures. The water dimer equilibrium structure was
predicted by ab initio calculations153-156 and experi-

mentally determined in 1974 by molecular beam
electric resonance spectroscopy.117 The first full water
pair potential obtained through ab initio calcula-
tions157 dates back to 1976, see ref 158 for a review
of the extensive ab initio literature.

It was shown by the now classical work of Dyke
and co-workers117,159 and in a large number of more
recent papers118-123,126-129,144,147 that the 6-dimension-
al intermolecular potential surface of the water dimer
has eight equivalentspermutationally distincts
global minima which are all connected by tunneling.
The equilibrium structure has reflection symmetry,
and its point group is isomorphic to the permutation-
inversion group G2 ) {E, (12)*}, with 1 and 2 labeling
the two ‘free’ acceptor protons. Also, the PI symmetry
group G16 associated with the tunneling processes
was discussed159 already in 1977. The VRT levels of
the water dimer can be labeled by the irreducible
representations (irreps) of this PI group. Three
different tunneling processes allow the dimer to
interconvert between the eight minima, see Figure
7. The first process, acceptor tunneling, does not
require complete breaking of the hydrogen bond and
has the lowest barrier: 156 cm-1 in the SAPT-5s
potential of ref 114 and 152. (This potential was
named SAPT-5s because it is the analytic represen-
tation of a large number of data points computed ab
initio by symmetry-adapted perturbation theory
(SAPT) in the form of a site-site model with eight
sites per molecule, five of which are symmetry
distinct.) The permutation made feasible by acceptor
tunneling is (12), but note that the minimum energy
pathway for this process is not simply the rotation
of the acceptor about its C2 axis. Acceptor tunneling
yields a relatively large splitting between the A1

(,
E(, B1

( levels, on the one hand, and the A2
-, E-, B2

-

levels, on the other. The magnitude of this splitting
is about 10 cm-1 in (H2O)2 and about 2 cm-1 in (D2O)2
but depends strongly on the value of the rotational

Figure 7. Three different hydrogen-bond rearrangement
processes in the water dimer which connect the eight
equivalent, permutationally distinct, equilibrium struc-
tures: acceptor tunneling with PI operation (12), donor-
acceptor interchange tunneling with PI operation (AB)
(1423), and bifurcation (or donor) tunneling with PI opera-
tion (12) (34).
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quantum number K. The water dimer is a prolate
near-symmetric rotor, and K is the projection of the
total angular momentum J on the long axissthe a
axis. The second and third processes, donor-acceptor
interchange and bifurcation tunneling, involve hy-
drogen-bond breaking with higher barriers: 185 and
636 cm-1, respectively, in the same SAPT-5s poten-
tial. The permutation associated with donor-acceptor
interchange tunneling is (AB)(1423) ) (AB)(13)(24)-
(12), i.e., the simultaneous interchange of the oxygen
nuclei A and B and the protons 1, 2 and 3, 4 of the
monomers A and B, combined with the acceptor
tunneling permutation (12). This process leads to
splittings between the A, E, and B levels which are
typically 0.3 cm-1 in (H2O)2 and 0.02 cm-1 in (D2O)2.
The permutation associated with bifurcation tunnel-
ing is (12)(34), where (34) exchanges the bound and
free proton of the donor. This process does not cause
a further splitting of the rovibrational levels but leads
to a shift of the E levels relative to the A and B levels.
This shift is very small: about 0.02 cm-1 ≈ 700 MHz
for (H2O)2 and 7 MHz for (D2O)2. The three tunneling
pathways are illustrated in Figure 7, and the typical
level splitting pattern is shown in Figure 8.

A detailed qualitative model that explains the
tunneling splitting pattern of the water dimer levels
in terms of a number of empirical parameters was
developed by Coudert and Hougen.160,161 They used
the water pair potential of Coker and Watts162 to
determine the three tunneling paths and the internal-
axis method (IAM)163 to determine the amount of
angular momentum generated by the tunneling mo-
tions and the J, K dependence of the splittings. This
model was used as a basis to fit tunneling levels to
the measured spectra;121-123 the result of this fit is a

set of empirically determined parameters which
completely determine all the tunneling levels for
arbitrary J and K.

4.2. Dynamics Calculations
After a more approximate 5-dimensional treatment

by Althorpe and Clary164,165 in 1994 and some rigid-
body quantum Monte Carlo calculations166 giving
estimates of the tunneling splittings, Leforestier et
al.167 were the first in 1997 to calculate nearly exactly
the VRT levels of the water dimer from a 6-dimen-
sional potential. They implemented a split Wigner
pseudospectral method.168 Somewhat later, the same
problem was solved by Chen and Light151 with the
use of a sequential diagonalization-truncation method
and by Groenenboom et al.,152,169 who developed a
very efficient implementation of a conventional varia-
tional method. All these methods start from the
Hamiltonian for two rigid monomers in body-fixed
dimer coordinates

This expression may be considered a generalization
of the Hamiltonian used for atom-molecule com-
plexes such as Ar-CH4, see eq 8 of section 3. The
two-angle embedded dimer frame fB is the same, and
the monomer frames gbA and gbB are similar to the
monomer frame gb used in that section. R is the
distance between the centers of mass of the mono-
mers, and ωA and ωB with ω ≡ (ω1, ω2, ω3) are the
Euler angles describing the orientations of gbA and gbB
with respect to the dimer frame fB. The potential V(R,
ωA, ωB) contains five angular coordinates, because it
depends on ω1A and ω1B only through the difference
ω1A - ω1B. The operator J represents the total
angular momentum, j ) jA + jB is the sum of the
monomer angular momenta, and µAB is the dimer
reduced mass. The kinetic-energy operator of mono-
mer X () A or B) is given by

with the rotational constants AX, BX, and CX. The
Hamiltonian in eq 14 has been derived by Brocks et
al.23 with the use of chain rules. An alternative
derivation is given in Appendix A-4 of ref 10.

Another common feature of the implementations
of refs 167 and 152 is the use of a coupled product
basis of symmetric rotor functionssWigner D-
functions37sfor the angular coordinates

Figure 8. Tunneling splitting pattern of the rovibrational
levels of the water dimer for J ) 0 by the mechanisms
shown in Figure 7.

H ) TA + TB +
1

2µABR2[-p2 ∂

∂R
R2 ∂

∂R
+ J2 + j2 - 2j‚J] +

V(R, ωA, ωB) (14)

TX ) AX(jXx
BF)2 + BX(jXy

BF)2 + CX(jXz
BF)2 (15)

|jA, kA, jB, kB, jAB, K; J, M〉 )

[(2jA + 1)(2jB + 1)(2J + 1)

256π5 ]1/2

×

∑
mAmB

DmAkA

(jA) (ωA)*DmBkB

(jB) (ωB)*〈jAmA; jBmB|jABK〉 ×

DMK
(J) (R, â, 0)* (16)
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in which 〈jAmA; jBmB|jABK〉 is a Clebsch-Gordan
coupling coefficient37 and R, â are the polar angles of
the intermolecular vector RB ≡ RBΑΒ with respect to
the space-fixed frame. Reference 151 uses a similar,
but uncoupled, basis. Various DVR schemes were
applied for the radial coordinate R. In each of the
implementations, the basis was adapted to the G16
symmetry and the calculations were performed for
each G16 irrep separately. Large values of jA and jB
(up to 12), leading to basis sizes of more than a
hundred thousand, were required to converge the
bound states of (H2O)2 and, especially, (D2O)2. The
reasons for this slow convergence are the rather
sharp minima in the potential surface at the hydrogen-
bonded geometries and the occurrence of very small
tunneling splittings and shifts. This made these
calculations much more demanding than those for the
NH3 dimer,63,64 which used the same Hamiltonian
and basis, and were described in the 1994 Chemical
Reviews issue on van der Waals molecules.10

In the split-Wigner pseudospectral method,167 the
kinetic energy is computed with the analytic basis
of eq 16 while the potential is calculated on a
6-dimensional grid. The grid for the Euler angles
consists of Gauss-Legendre quadrature points for
the colatitudinal angles and evenly spaced points for
the azimuthal angles. In the first version of this
method,167 the radial basis consisted of sine functions,
with the corresponding equidistant DVR points.
Later,144 this sine function basis was contracted and
the radial points were optimized by means of a
variation170 of the scheme proposed by Harris et al.171

The eigenvalue problem is solved by the iterative
Lanczos algorithm, avoiding the storage of the full
Hamilton matrix. In each cycle of the iteration the
matrix elements of the potential are first transformed
to an uncoupled Wigner D-function product basis and
next to the G16 symmetry-adapted and coupled an-
gular basis. The dimension of the eigenvalue problem
is determined by the latter basis.

The sequential diagonalization-truncation
method151 diagonalizes the angular part of the Hamil-
tonian and then the radial part in successive steps,
with truncation of the intermediate eigenfunction
basis. A potential-optimized DVR is used for the
radial coordinate R. At each radial DVR point the
5-dimensional angular Hamiltonian is constructed
with a symmetry-adapted basis of uncoupled Wigner
D-function products. The kinetic energy is simple in
this basis. The potential matrix elements over the
angular basis are computed by numerical integration.
Also, this is done in a stepwise procedure, first
integrating over the three azimuthal angles and then
over the two colatitudinal angles, with partial storage
of the intermediate results. The primitive potential
matrix elements are computed only once and saved.
Up to now, this method has been restricted to J ) 0.

In the variational method of Groenenboom et
al.,152,169 both the potential and the kinetic energy are
calculated in the symmetry-adapted and coupled
angular D-function basis. The potential is expanded
in the same type of angular functions as the basis in
eq 16. Since the potential is invariant under overall
rotations, only the functions with J ) M ) K ) 0

occur in its expansion. High angular functions, with
jA and jB values up to 8 inclusive, are required to
converge the expansion of the strongly anisotropic
water pair potential. The angular integrals can then
be reduced to products of 3-j and 9-j symbols, see our
earlier review.10 In the implementation of Groenen-
boom et al., these are precomputed and stored, not
from the start, but at some intermediate level. For
the radial basis they use a contracted sinc function
DVR172,173 obtained by solving the 1-dimensional
radial Schrödinger equation. The radial potential in
this equation corresponds to a fixed-angles cut of the
6-dimensional surface through the global minimum.
The eigenvalues and eigenvectors are obtained by the
Davidson algorithm which, just as the Lanczos
scheme, avoids storage of the full Hamilton matrix.

Both Leforestier et al.144,167 and Chen and Light151

used their method to test several ab initio and
empirical water potentials against the dimer spec-
trum. Although these potentials had been selected
in the belief that they are the best available, they
produced VRT transition frequencies which deviate
from experiment by factors of 2 or 3, or even by an
order of magnitude, cf. Figures 4-6 in ref 144 and
Figure 12 in ref 151. Fellers et al.34 implemented the
method of Leforestier et al.167 as part of a fitting
program and obtained a ‘spectroscopic’ water pair
potential. They started from the ab initio-based
ASP-W potential of Millot and Stone174 and opti-
mized some of the parameters in this potential
through a fit of the dimer spectrum.34 Groenenboom
et al.152,169 used their program to test and improve a
new water pair potential114,175 obtained from exten-
sive ab initio calculations applying symmetry-adapted
perturbation theory (SAPT).30,176

4.3. Pair Potential and Dimer VRT Levels
As an illustration of the H2O dimer results, we

show in Figure 9 the VRT levels for J, K e 2 which
Groenenboom et al.152 calculated from the SAPT-5s
ab initio pair potential of ref 114 and compare them
with the experimental data.123 The smaller splittings
resulting from the donor-acceptor interchange and
bifurcation tunneling are in remarkably goodswithin
0.03 cm-1sagreement with experiment for each J,
K. Also, the end-over-end rotational constant B + C,
which is a measure for the average intermolecular
distance R, and even the rotational constant A, which
depends sensitively on the average orientations of the
molecules in the dimer, are close to the measured
values. The frequency of the 22.3 cm-1 transition
observed between the lowest K ) 1 and 2 levels
agrees with experiment to 0.1 cm-1. The larger
acceptor tunneling splittings a(K) have not been
directly measured, but the sum a(K ) 0) + a(K ) 1)
is known. This is the only quantity that was not so
well reproduced by the ab initio calculations: it is
overestimated by about 40%. From a comparison with
the VRT levels obtained144,151 from previously avail-
able water pair potentials, it was concluded that the
SAPT-5s potential represents a significant improve-
ment.

The corresponding levels of the D2O dimer are
displayed in Figure 10. The acceptor tunneling split-
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tings are about 6 times smaller than those in the H2O
dimer, and the interchange splittings are smaller by
factors of 10-20. Nevertheless, it was found that the
SAPT-5s potential produced interchange splittings
that overestimate the experimental values only by
about 20%. Also, the rotational constants B + C and
A agreed well with experiment,129 but the acceptor
tunneling splittings deviated more strongly, just as
in the H2O dimer. Here they were overestimated by
a factor of 2. However, one must keep in mind that
the smaller the splittings, the more sensitive they
are to the shape of the barriers in the potential.

Groenenboom et al. developed an efficient proce-
dure152,169 to use the spectra to improve the ab initio
SAPT potential. The levels and transition frequencies
of (H2O)2 were analyzed with respect to their sensi-
tivity to changes in the linear parameters in the
SAPT-5s potential. Then, these parameters were
altered in such a way thatsin a first-order estimates
the only quantity which deviates substantially from
experiment, i.e., the acceptor tunneling splitting,
becomes equal to the experimental value. Constraints
in this parameter variation were that the (already
accurate) interchange splittings do not change and
that the parameter modification leaves the potential

as close as possible to the ab initio potential. Possible
small effects of the nonrigidity of the water molecules
are implicitly included by this procedure. With this
reparametrized SAPT-5s potential (referred to as
SAPT-5s-tuned), the VRT levels of (H2O)2 were
recomputed and excellent agreement with experi-
ment was obtained, see Figure 9. The tuned potential
was then used to compute the energy levels of (D2O)2
without any further reparametrization. As can be
seen in Figure 10, also the results for (D2O)2 agreed
very well with experiment. The 100% deviation from
experiment for the acceptor tunneling splitting was
reduced to 6%, and the smaller (20%) deviations of
the interchange tunneling splittings were diminished
to about 5%. The VRT levels of (D2O)2 calculated from
the SAPT-5s-tuned potential agree equally well with
the experimental data as the results obtained from
the VRT(ASP-W) potential,34 which was fit to these
levels, while the representation of the (H2O)2 levels
is better with the SAPT-5s-tuned potential.

Recently, a beautiful collection of spectroscopic data
has been gathered147,177,178 on the intermolecular
vibrations of both (H2O)2 and (D2O)2, with frequencies
up to 150 cm-1. An interesting observation is that
the harmonic model fails rather badly in representing
these vibrations: the harmonic frequencies179 are
typically 50% larger than the experimental values.
Part of the experimental data were used in the fit of
the VRT(ASP-W) potentialsFigure 3 in ref 34. In
ref 169 it is shown that all of the measured vibra-

Figure 9. VRT levels of the H2O dimer (in cm-1) from
converged calculations152,169 with the SAPT-5s ab initio
potential (upper numbers) and the tuned version of this
potential (middle numbers) in comparison with experimen-
tal data123 (lower numbers). The labels A1,2

( , B1,2
( , E(

correspond to the irreducible representations of the PI
group G16; J and K are the dimer rotational quantum
numbers. The rotational constant A is defined here (also
for the experimental levels) as the difference between the
average energy of all the tunneling components of the K )
1 levels and the average energy of the K ) 0 levels for J )
1.

Figure 10. VRT levels of the D2O dimer calculated152,169

from the SAPT-5s ab initio potential (upper numbers) and
from the tuned version of this potential (middle numbers)
in comparison with experimental data129 (lower numbers).
The energies are drawn to scale, except for the small
interchange splittings which are enlarged by a factor of 10.
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tional frequencies are reproduced by the SAPT-5s-
tuned potential to within 3.6 cm-1 on average (i.e.,
to better than 5%). This is quite remarkable since
this potential was not tuned to any (D2O)2 data or to
any vibrationally excited levels. The second virial
coefficients computed with both SAPT-5s potentials114

are in good agreement with the best experimental
data. The well depth De is 4.86 kcal/mol for SAPT-5s
and 5.03 kcal/mol for SAPT-5s-tuned. The most
reliable estimate, from the ab initio work of Klopper
and Lüthi,180 is De ) 5.0 ( 0.05 kcal/mol. See ref 114
for a discussion of the comparison of the interaction
energy obtained for monomers in their (relaxed)
equilibrium geometries180 with those obtained for
vibrationally averaged monomer structures.114 The
dimer dissociation energy D0 with SAPT-5s-tuned is
3.08 kcal/mol ) 1077 cm-1 for (H2O)2 and 3.47 kcal/
mol ) 1214 cm-1 for (D2O)2. The best experimental
value181 of D0 for (H2O)2 is 1250 ( 175 cm-1. The
Fortran code that generates the SAPT-5s(-tuned)
potential is deposited as AIP Document No. EPAPS:
EPRLTAO-84-060018. An advantage of this potential
over the potentials based on the ASP model174 is that
its analytic representation in the form of a site-site
model114,152 is considerably simpler and, hence, much
cheaper to evaluate.

The work of Groenenboom et al.152,169 has also
provided a more complete characterization of the
VRT levels of the water dimer. The experimentally
determined transitions are sufficient to fix most but
not all of the levels. In (H2O)2, for example, the sum
a(K ) 0) + a(K ) 1) ) 13.9 cm-1 has been measured
but the individual values a(K ) 0) and a(K ) 1) of
the acceptor tunneling splittings for K ) 0 and K )
1 were not known. The value of a(K ) 0) ) 9.4 cm-1

first given in the experimental paper of Zwart et
al.,123 and later quoted144,151,167 as the ‘experimental’
value, was actually extracted from a fit of the
spectroscopic data with the approximate model of
Coudert and Hougen.160,161 A more precise value, a(K
) 0) ) 11.2 cm-1, has been obtained from full
6-dimensional calculations with the SAPT-5s-tuned
potential which reproduce the measured quantity a(K
) 0) + a(K ) 1) ) 13.9 cm-1. While one must conclude
that the Coudert-Hougen model is not so reliable for
the large acceptor tunneling splittings, the smaller
splittings originating from donor-acceptor inter-
change and the shifts from bifurcation tunneling turn
out to be accurately represented by this model. Also,
for (D2O)2 the ‘experimental’ value of a(K ) 0) ) 1.77
cm-1 was not directly measured; it was based on the
assumption129 that the value of a(K ) 0) for the
acceptor antisymmetric O-D stretch excited state of
(D2O)2 is equal to the ground-state value. The calcu-
lations152 demonstrated that this assumption is justi-
fied.

Summarizing this section, it may be concluded that
the use of high-resolution spectroscopic data has
shown that a number of the best available water pair
potentials currently applied in simulations of liquid
water fail to provide a good quantitative description
of the intermolecular vibrations and tunneling pro-
cesses occurring in the dimer. This is perhaps not so
surprising for empirical ‘effective’ pair potentials

adjusted to the properties of liquid water and ice that
implicitly include the many-body interactions. How-
ever, potentials derived from ab initio calculations
on the water dimer such as MCY,157 NEMO,182 ASP-
S, and ASP-W174 and semiempirical potentials partly
based on dimer properties such as RWK183 also
emerged from this spectroscopic test rather poorly.
Fellers et al.34 obtained a ‘spectroscopic’ pair potential
from a fit to the dimer spectrum. Groenenboom et
al.152 have shown that it is possible to obtain a water
pair potential from ab initio calculations by SAPT114

which, after some tuning, passed the very critical test
of quantitatively reproducing detailed dimer spec-
troscopic data. In the next section, we will show how
these potentials can be further evaluated by consid-
ering the water trimer spectrum and discuss the
important three-body interactions.

5. Three-Body Interactions; Water Trimer
Spectrum

Since the first experimental characterization of the
water trimer in 1992 with high-resolution laser
spectroscopy in the terahertz region,125 a great deal
of experimental results have been obtained for this
complex. Four torsional bands145 of (D2O)3 and two
torsional bands146 of (H2O)3 have been added to the
first observations.131,132 The standard procedure to
use high-resolution spectral information is to make
a fit ofsand simultaneously assignsthe raw data to
extract the molecular properties: vibrational fre-
quencies, rotational and distortion constants, etc. For
‘normal’ molecules, the detailed rotational structure
present in the high-resolution spectra can be repre-
sented by the semirigid rotor model. This, in fact,
could be taken as the definition of a ‘normal’ mol-
ecule. But also for the much floppier van der Waals
molecules, this modelsimplemented in the standard
spectroscopic fitting programssis commonly used.
Sometimesswe presented the example of Ar-CH4 in
section 3sthis standard procedure fails completely.
In the case of the water trimer, the spectra could be
partly fit with the use of this model if many different
parameters were introduced for different bands and
subbands. However, even then, the accuracy of the
fit remained much lower than usual and no physical
meaning could be attributed to several of the terms
that had to be introduced into the rotational model
Hamiltonian and to the parameters extracted from
such a fit. A much more satisfactory fit of the water
trimer spectrum has been obtained via the derivation
of a new model Hamiltonian which directly takes into
account the large-amplitude internal motions and the
occurrence of tunneling between multiple minima in
the potential surface. This derivation, and the fit of
the water trimer spectrum with the use of this
rotational-tunneling model Hamiltonian, are out-
lined below. This has led to a complete characteriza-
tion145,146 of the torsional states of (D2O)3 and (H2O)3
up to energies near 100 cm-1.

Also, the theoretical investigation of the water
trimer has made much progress. Ab initio calcula-
tions179,184 have predicted the triple hydrogen-bonded
equilibrium structure of this trimer, evaluated the
barriers of different rearrangement processes,113,185
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investigated tunneling pathways,186 and determined
3-109,187 and 4-dimensional188 potential surfaces. Sev-
eral calculations of the VRT levels and spectrum of
the water trimer22,188-198 have been performed on
these surfaces. Also, the rigid-body quantum Monte
Carlo method has been applied166,199,200 to estimate
the tunneling splittings in the water trimer with the
use of the ASP-W potential,174 which includes non-
additive polarization effects. Recently, the trimer
spectrum has been used, via 3-dimensional calcula-
tions of the VRT levels,152,201 to test global water
potentials. The spectrum probes both the pair poten-
tial and the three-body forces, in a much more direct
and sensitive way than the data collected for liquid
water and ice. The dynamical models and their
application are described below.

5.1. Torsion and Bifurcation Tunneling

The minimum energy structure of the water trimer,
the asymmetric ring shown in Figure 11, has been
established by many ab initio calculations.179,184,185 It
is a classic example of a frustrated equilibrium. Two
nonbonded (‘free’) hydrogens are on the same side of
the oxygen plane. Experimentally it has been dem-
onstrated that this nonplanar asymmetric structure
vibrationally averages to a planar symmetric top via
the torsional (flipping) motion,124,131 illustrated in
Figure 11. This large-amplitude hydrogen torsional
motion creates a degenerate rearrangement mecha-
nism, predicted as early as 1975 by Owicki, Shipman,
and Scheraga.202 All ab initio calculations performed
thus far109,113,114,185-187 indicate that this process is a
very facile one. Such low-barrier rearrangement
mechanisms naturally give rise to large tunneling
splittings. In light of the understanding gained at
present, it is perhaps more appropriate to consider
the torsional (also termed ‘pseudorotational’) large-

amplitude motions involving six equivalent minima
as giving rise to a set of vibrational energy levels
rather than to a genuine tunneling splitting. Experi-
ments and theory on mixed isotope water tri-
mers,142,194,196,203 where the symmetry of the system
is broken, confirm this analysis.

The torsional quantum levels of the water trimer
have been considered at various levels of theory. The
first, and simplest, was a 1-dimensional treatment
by Schütz et al. who used an adjustable cosine wave
as the potential.189,190 Their calculation obtained the
correct ordering of the energy levels but gave poor
quantitative results. A Hückel-like treatment of the
water trimer by Wales186 gave an improved descrip-
tion of the energy level structure but required fitting
a tunneling parameter (â1) to the experimental data.
Model torsional potential-energy surfaces fit to ab
initio-calculated points were created by Bürgi et al.187

and by van Duijneveldt-van de Rijdt and van Duijn-
eveldt.109 Two-dimensional191 and 3-dimensional192

dynamics calculations have been performed on these
potential surfaces. Three-dimensional calculations
that include the coupling of the torsional motions to
the overall rotation of the trimer were made by van
der Avoird et al.22,193 A 4-dimensional ab initio
potential which includes the symmetric intermolecu-
lar stretch coordinate has been calculated by Sabo
et al.188,197,198 and applied in a (3 + 1)-dimensional
dynamical model.

The second type of internal large-amplitude motion
in the water trimer is bifurcation tunneling (also
called donor tunneling). This is a rearrangement
process wherein a single water monomer exchanges
its hydrogen-bonded and free hydrogen atoms by
tunneling through a bifurcated transition state, as
shown in Figure 11. It could be observed experimen-
tally131 and unambiguously identified, since it gives
rise to a splitting of the torsional levels and transi-
tions into quartets. The splitting between the lines
in these quartets, typically about 300 MHz for (H2O)3
and about 2 MHz for (D2O)3, is much smaller than
the energy gaps between the torsional levels. This is
because the corresponding barrier height, calculated
by Fowler and Schaefer185 as 525 cm-1 (corrected for
zero point effects), is substantially higher than the
torsional barrier,109,113,114,185-187 which is about 90
cm-1. The splitting of the levels due to the combined
effect of torsional flips and bifurcation tunneling is
shown in Figure 12.

The construction of the torsional states of the water
trimer, including a group theoretical treatment, has
been detailed in several papers.22,131,186,193,195 Also, the
bifurcation tunneling splitting of the levels was
considered in these references. Even without break-
ing any chemical bonds, i.e., considering a 12-
dimensional intermolecular potential surface, the
water trimer may, in principle, interconvert between
96 equivalent equilibrium structures. This corre-
sponds with the permutation-inversion (PI) sym-
metry group G96, generated by the three transposi-
tions (12), (34), and (56) that exchange the protons
(or deuterons) in the same molecule, the six permu-
tations that permute the three molecules as a whole,
and inversion, E*. In the first pathway shown in

Figure 11. Hydrogen-bond rearrangement processes ob-
served in the water trimer: torsional flips of the free
hydrogens approximately about the hydrogen bonds, PI
operation (ACB) (153) (264)*, and bifurcation tunneling,
where the roles of the free and bound hydrogens of a
molecule in the cluster are switched, PI operation (56)*.
Each of the VRT bands reported arises from the transitions
between the levels created through the torsional vibration.
Bifurcation tunneling gives rise to the quartet splitting of
the rovibrational lines in the spectrum.
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Figure 11, a hydrogen is flipped from one side of the
oxygen framework to the other through a simple low-
barrier process. This connects two of the equivalent
minima in the potential: the ‘down-up-down’ (dud)
and the ‘up-up-down’ (uud) minimum. The end-
points of this pathway correspond to the permuta-
tion-inversion operation F ) (ACB) (153) (264)*,
where (ACB) cyclically permutes the oxygen nuclei
A, B, and C of the different monomers and (153) (264)
simultaneously permutes their protons. Extending
this pathway, one ultimately visits six equivalent
minima through a cyclic process. The PI symmetry
group associated with the torsional flipping between
these six minima is the cyclic group G6, generated
by the operation F and isomorphic to the point group
C3h. The torsional energy levels are conveniently
labeled by the quantum number k ) 0, (1, (2, 3,
which corresponds to the 1-dimensional complex
irreducible representations (irreps) of the Abelian
group G6. A diagram showing the six lowest energy
torsional levels is given in Figure 12. The symmetry
of these levels may be compared to a Hückel treat-
ment of the π-electron system of benzene: The levels
with k ) 0 and k ) 3 are nondegenerate, as the A
and B levels in benzene, while those with k ) (1 and
k ) (2 are 2-fold degenerate, similarly to the benzene
E levels.

Next we consider the bifurcation tunneling process
shown in Figure 11. This rearrangement mechanism,
along with the ‘flipping’ process discussed above,
allows the water trimer to access 48 equivalent
minima. The molecular symmetry group G48 is ob-
tained by extending the torsional flipping symmetry
group G6 with the operations (12)*, (34)*, and (56)*,
which represent the bifurcation tunneling pathways
of monomers A, B, and C, respectively. The only

permutation lacking to generate the full intermo-
lecular PI group G96 is the operation that inverts the
directions of all three hydrogen bonds simultaneously
or, alternatively, interchanges two of the three whole
water molecules. This process, which would require
a concerted breaking of more than one hydrogen
bond, has not been observed.131 Hence, the feasible
PI group15 is G48, rather than G96. The group theory
for these rearrangement processes has been exam-
ined extensively in a number of papers.22,131,186 A
model has been proposed186 and elaborated22 which
explicitly expresses the bifurcation splitting of the
torsional levels in terms of two parameters â2 and
â3, associated with two different possible bifurcation
tunneling pathways (see Table 2 of ref 22). Figure
12 illustrates that the resulting splitting pattern
becomes rather complicated, especially for the de-
generate levels with k ) (1 and k ) (2.

In refs 22 and 193 the theory was further extended
to include the overall rotation of the trimer, by
introduction of the basis |Φk〉|JKM〉. The functions
|Φk〉 represent the internal torsional motions and the
symmetric rotor functions |JKM〉 ≡ DMK

(J) (R, â, γ)* the
overall rotation. The total angular momentum quan-
tum number J and its space-fixed z-component M are
exact constants of the motion. Functions with differ-
ent K, the total angular momentum component along
the trimer (symmetric rotor) c-axis, are mixed by
Coriolis coupling of the internal motions with the
overall rotation, see eq 23. Below we will show that
this Coriolis coupling splits the -|k| and +|k| sub-
states of degenerate torsional levels with k ) (1 and
k ) (2 by a relatively large amount -2úCK, linear
in K. Another observation is that the bifurcation-
rotation splitting patterns of the A levels are es-
sentially different from those of the T levels, cf.
Figures 2 and 3 in ref 22 and Tables 3 and 4 in ref
193. Both these effects will be discussed in section
5.3. By A levels we mean here the levels that carry
the A1g,1u

( , A2g,2u
( , and A3g,3u

( irreps of G48 and by T
levels those that carry the Tg,u

( irreps of the same
group. The A2, A3 irreps are complex conjugate irreps;
the corresponding energy levels are always degener-
ate. Torsion-rotation functions |Φk〉|JKM〉 carry the
G6 irrep k - K (modulo 6). Transitions between the
energy levels follow the dipole selection rule

This rule permits the allowed transitions to be
easily determined, as well as the band polarization.
Parallel transitions correspond by definition to ∆K
) 0 and hence ∆k ) (3. Perpendicular transitions
show two distinct subbands, as ∆k ) +2 is only
allowed when ∆K ) -1 while ∆k ) -2 requires ∆K
) +1. The gap between these two subbands is
relatively large, because of the linear Coriolis split-
ting -2úCK of the +|k| and -|k| sublevels. The G48
selection rules are easily expressed in terms of the
irreps A1g,1u

( , A2g,2u
( , A3g,3u

( , and Tg,u
( labeling the

torsion-bifurcation levels. Dipole transitions are
allowed only between levels carrying the same irrep
Γ except for the ( parity which must be opposite, i.e.,
Γ+ T Γ-.

Figure 12. Tunneling splitting pattern of the rovibrational
levels of the water trimer for J ) 0 by the mechanisms
shown in Figure 11. The G48 selection rules for dipole
transitions between these levels are Γ+ T Γ-.

∆(k - K) ) 3(modulo 6) (17)
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5.2. Torsional Model Hamiltonian
For the 12 intermolecular degrees of freedom of the

water trimer, it is presently not possible to perform
calculations as accurate as for the dimer. Both from
experiment142,145,146 and theory22,188,193,196 it became
evident, however, that there is a good adiabatic
separation between the relatively fast vibrations of
the triangular hydrogen-bondedsfairly rigidsframe-
work and the slower torsional motions of the three
water monomers about their hydrogen bonds. A
model Hamiltonian for the torsional motions of the
three monomers in a rotating water trimer was
rigorously derived in ref 22. We will briefly sum-
marize this derivation, because it refers to a con-
strained curvilinear internal motion in three coupled
degrees of freedom and forms a nice illustration of
the general theory outlined in section 2.1. It was
based on the assumption that the trimer has a rigid
equilateral triangular framework, held together by
three hydrogen bonds, and that each of the monomers
v ) A, B, and C can only rotate about a single fixed
axis hv, with rotation angle øv, see Figure 13. These
internal rotations (or torsions) are hindered by a
potential V (øA, øB, øC) which has minima for the
external, i.e., non-hydrogen-bonded, protons (or deu-
terons) lying above or below the plane through the
molecular centers of mass. There are six equivalent
global minima, and the torsional motions involve
‘flips’ of the external protons between these minima.
The derivation of the Hamiltonian starts with the
definition of a rotating body-fixed (BF) frame, with
Euler angles R, â, and γ defining the orientation of
this frame with respect to a space-fixed (SF) system
of axes, and the coordinate transformation

The rotation matrices Rz, etc., are defined in
Appendix B, and dv,i denotes the Cartesian coordinate
vector of nucleus i in molecule v. Then the explicit
transformation is introduced which relates the BF

Cartesian coordinates to the three torsional angles
øv

The fixed vectors υv and hv and fixed angles (êv -
æv) appearing in this expression are shown in Figure
13. Also, since the model uses rigid monomers, the
vectors xv,i are fixed; they are the Cartesian coordi-
nates of the nuclei in monomer v with respect to the
principal axes system of this monomer. The rotation
matrix Rh(ø), which describes the rotation about a
fixed axis h over the angle ø, is defined by eq 27 in
Appendix B. From this coordinate transformation,
eqs 18 and 19, follows the expression for the metric
tensor G corresponding to the six angular coordinates
(R, â, γ, øA, øB, øC). This tensor is substituted into the
Podolsky form of the kinetic-energy operator, cf. eq
4. The resulting operator is rewritten by introducing
internal angular momentum operators j ) jA + jB +
jC associated with the torsional motions of the
monomers

Almost all the complexity of this kinetic-energy
operator is hidden in the definition of the non-
Hermitian operators j. The operator jv is not a vector
operator but rather the generator of rotations about
a single axis hv. Nevertheless, it is convenient to
introduce the operators j( ) jx ( ijy which shift the
quantum number k, the G6 irrep label. Explicit
expressions for j( and jz in terms of the torsional
angles øA, øB, øC are given in eqs A44 and B5 of ref
22. The operator J with components Jx, Jy, Jz is the
usual body-fixed total angular momentum operator,
depending on the Euler angles R, â, γ, and µ(øA, øB,
øC) is the inverse inertia tensor. The operator pv is
defined as -ip∂/∂øv, and the constant Λvssee eq 3 of
ref 22sis the moment of inertia of monomer v about
its fixed axis of rotation.

Because of the non-Hermiticity of the operators j,
the operator in eq 20 and also the Hamiltonians in
eqs 23 and 24 below contain the Hermitian conjugate
operators j†. Hence, they are examples of writing the
Podolsky kinetic-energy operator as in eq 4. As noted
there, we do not need the explicit formsgiven in eq
A50 of ref 22sof the operators j† because in basis set
or DVR calculations one can always apply the turn-
over rule to replace matrix elements of the Hermitian
conjugate operators by the corresponding expressions
with the original operators, see Appendix A.

The inertia tensor µ-1 consists of a large constant
contribution of the hydrogen-bonded framework and
a small (≈1%) term which depends on the torsional
angles øA, øB, øC. The latter may safely be neglected.
For identical monomers, with their centers of mass
forming an equilateral triangle, the constant part of
µ is diagonal and contains the rotational constants
of the trimer: A ) B ) µxx/2 ) µyy/2 and C ) µzz/2.

Figure 13. Planar reference geometry of the water trimer,
with rotation angles øA ) øB ) øC ) 0, in the torsional model
of refs 22 and 193. The fixed vectors υv point from the
trimer center of mass to the monomer mass centers, and
the vectors hv are the fixed monomer rotation axes. The x
and y axes describe the rotating BF frame.

dv,i
SF ) Rz(R)Ry(â)Rz(γ)dv,i

BF (18)

dv,i
BF ) υv + Rhv

(øv)Rz(êv - æv)xv,i (19)

T )
1

2
(J† - j†)µ(øA, øB, øC)(J - j) +

1

2
∑

v ) A,B,C
Λv

-1pv
†pv (20)
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The Hamiltonian resulting from eq 20 can be split
into three terms

The first term

is simply the oblate symmetric rotor Hamiltonian for
the overall rotation of the complex. The second term

represents the Coriolis coupling between the overall
angular momentum J, with J( ) Jx - iJy, and the
torsional angular momentum j. The last, internal
motion, term

describes the torsional motions, with the (model)
potential V(øA, øB, øC) defined by fixing all other
internal coordinates of the trimer. This model is
justified for the ground vibrational state of the
hydrogen-bonded framework, since the hydrogen-
bond stretch/bend vibrations have considerably higher
frequencies than the torsional motions,179,189,190 but
it might break down at higher torsional energies. The
above Hamiltonian was used by Olthof et al.193 in
quantitative calculations of the torsional levels of
(H2O)3 and (D2O)3 for J ) 0, 1, and 2. The potential
V(øA, øB, øC) was taken from the ab initio calculations
by Bürgi et al.187 (the BGLK potential) and by van
Duijneveldt-van de Rijdt and van Duijneveldt109 (the
DD potential). A sinc function DVR172,173 was used
for each of the torsional coordinates øA, øB, øC. The
results with the DD potential agree fairly well with
the experimentally measured transition frequen-
cies145,146 for the lower torsional levels, while for the
higher levels the results with the BGLK potential are
slightly better. Later, Geleijns and van der Avoird196

returned to the more general kinetic-energy operator
in eq 20 to derive slightly generalized versions of eqs
22-24 for water trimer isotopomers with less sym-
metry than (H2O)3 and (D2O)3. The latter were used
in quantitative DVR calculations for H/D mixed
isotopomers. Again, the results from the ab initio
potentials are in fair agreement with the experimen-
tal data.142 Also, the intensities of the torsional
transitions were computed,196 which led to the reas-
signment of one of the observed bands.

5.3. Effective Rotational and Tunneling
Hamiltonian

To interpret the complex rotational and bifurcation
tunneling structure in the observed torsional bands
of (H2O)3 and (D2O)3, one needs an effective Hamil-
tonian which describes the rotational energy levels

for each torsional state. Such an effective Hamilto-
nian must take into account the large-amplitude
motions in the water trimer. In particular, it must
correctly include the effects of the Coriolis coupling
between the overall rotations of the water trimer and
its internal torsional or ‘flipping’ motions. The model
Hamiltonian derived in section 5.2 includes these
effects and, therefore, forms a good starting point.

In various textbooks12,204-206 it is shown how an
effective rotational Hamiltonian for each vibrational
state of a molecule can be derived with the help of
Van Vleck perturbation theory or ‘contact transfor-
mations’. Hershbach207 used this formalism to obtain
the effective rotor Hamiltonian for each torsional
state in a molecule with a single internal rotation.
An effective rotational Hamiltonian for the water
trimer, with its three coupled torsional motions, has
been obtained145 by the application of Van Vleck
perturbation theory to the Hamiltonian of eq 21. The
effective Hamiltonian for a torsional state with
quantum number ksan eigenstate of the internal
Hamiltonian in eq 24swas derived by including the
perturbation HCor of eq 23 to second order. For the
nondegenerate torsional levels with k ) 0 and 3, one
simply obtains a standard symmetric rotor Hamil-
tonian

where E0
(k) is the energy of torsional level k for J ) 0,

i.e., the ‘vibrational origin’. The rotational constants
B(k) and C(k) contain second-order Coriolis coupling
terms, defined in ref 145. For the 2-fold-degenerate
torsional levels with k ) (1 and (2, the effective
Hamiltonian is more complex

Expressions for the Coriolis coupling parameters
ú|k| and µ++

|k| ) (µ--
|k| )* are given in ref 145, while δ is

a constant bifurcation splitting parameter defined in
ref 146. The Kronecker delta δΓ,T implies that the
term δ does not appear for all G48 irreps Γ but only
for the levels carrying the Tg and Tu irreps. This
follows from the theory in ref 22.

The occurrence of the linear Coriolis term,
-2ú|k|C|k|Jz, giving rise to diagonal terms linear in K,
is quite remarkable. Normally the occurrence of such
a linear term implies that at least one component of
the vibrational angular momentum of some degener-
ate vibration must have a nonzero expectation value.
In this case, however, the expectation value of the
torsional angular momentum operator jz + jz

† van-
ishes and the linear Coriolis term originates com-
pletely from second-order perturbation theory, through
the commutation relation J+J- - J-J+ ) 2Jz. A
similar effect was found in earlier work on benzene-
Ar,26,208 where the degenerate van der Waals bending
mode carries first-order vibrational angular momen-
tum but also a substantial second-order contribution.
In light of the standard theory for normal semirigid

H ) Hrot + HCor + Hint (21)

Hrot ) B(Jx
2 + Jy

2) + CJz
2 (22)

HCor ) -1
2

B[(j+ + j-
† )J+ + (j- + j+

† )J-] -

C(jz + jz
†)Jz (23)

Hint ) -
p2

2Λ
∑

v ) A,B,C

∂
2

∂øv
2

+
1

2
B(j+

† j+ + j-
† j-) + Cjz

†jz +

V(øA, øB, øC) (24)

Heff
(k) ) E0

(k) + B(k)J2 + [C(k) - B(k)]Jz
2 (25)

Heff
(k′,k) ) δk′,k[E0

|k| + B|k|J2 + (C|k| - B|k|)Jz
2 -

2ú|k|C|k|Jz] + δk′,k-2(modulo 6)µ- -
(k) J-J- +

δk′,k+2(modulo 6)µ++
(k) J+J+ + δk′,-kδΓ,Τδ (26)
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molecules,12,205 this seems a strange phenomenon but
one should remember that the vibrational angular
momentum for such moleculesswhich perform small
amplitude vibrations about a single equilibrium
structuresis defined with respect to a body-fixed
frame fixed by the Eckart conditions. This choice
minimizes the Coriolis coupling between the vibra-
tions and rotations. We already pointed out that it
does not make sense to define such a frame for the
water trimer, because the torsional motions involve
tunneling flips between six equivalent equilibrium
structures.

Another remarkable observation is the occurrence
of J-J- and J+J+ terms. Normally the presence of
such terms implies that the molecule is an asym-
metric rotor with B * Α. Here, they occur only for
the degenerate levels with k ) (1 and (2, and in
contrast with the asymmetric rotor, they appear in
the off-diagonal blocks of the rotational Hamiltonian
with k′ ) -k, which automatically obey the rule that
k′ ) k ( 2 (modulo 6).

Finally, we note the presence of the constant
bifurcation splitting term δ in the off-diagonal k′ )
-k blocks, on the diagonal of these blocks. This extra
interaction term appears only for the T irreps of G48,
not for the A irreps. It gives rise to a strong interfer-
ence between the effects of Coriolis coupling and
bifurcation tunneling and is the origin of a very
irregular structure of the levels and spectra. Actually,
it is important only for (H2O)3, not so much for (D2O)3,
because the magnitude of the bifurcation splitting in
(H2O)3 is about 100 times larger. This puts this
splitting on the same scale as the linear Coriolis
splitting. Moreover, there is always a simple additive
effect of bifurcation tunneling, both in (H2O)3 and
(D2O)3, which gives rise to the observed quartet
splittings of the rovibrational levels.

The effective Hamiltonian (26) for degenerate
torsional levels with k ) (1 and (2, which operates
in the space of functions |k〉|JKM〉 with fixed |k| ) 1
or 2, is diagonal in J and M but not in K. It is easy
to build the diagonalization of the 2(2J + 1) dimen-
sional matrices of this effective Hamiltonian into a
fitting program that analyzes the rotational and
tunneling structure of the torsional bands. Before the
actual analysis of the experimental spectra, the
theory was checked by comparison of the energy
levels obtained from the effective Hamiltonian with
the results of full 3-dimensional DVR calculations of
the torsional levels for J ) 0, 1, 2, and 3, cf. Tables
3 and 4 of ref 193. The latter were based on the full
Hamiltonian of eq 21. It turned out that the effective
Hamiltonian gives an accurate representation of the
level splittings and shifts from the full numerical
computations and nicely reflects the irregularities in
the degenerate states with k ) (1 and (2.

5.4. Experimental Results and Analysis
A summary of all the torsional bands observed for

(D2O)3 and (H2O)3 and their assignment is given in
Table 2. This assignment has been unambiguously
confirmed by the analysis of the detailed rotational
and bifurcation tunneling structure of each band,
with the aid of the effective Hamiltonian in section

5.3. Especially the transitions involving 2-fold de-
generate torsional levels with k ) (1 and (2 were
difficult to assign line by line because of the strong
perturbations in these levels. Parallel transitions
involving such perturbations both in the initial and
final state are the bands at 89.6 cm-1 observed for
(D2O)3 and the band at 42.9 cm-1 for (H2O)3. In the
first instance, the observation that the spectrum at
89.6 cm-1 exhibited far too many transitions to be
accounted for by a single well-behaved band led to
the assumption that the spectrum arose from an
asymmetric rotor and thus exhibited asymmetry
doublets. However, the corresponding analysis did
not account for the strongly perturbed spectrum. It
is now evident that the observed spectrum consists
of two parallel (∆K ) 0) subbands: the k ) -2 r +1
and k ) +2 r -1 torsional transitions. Also, the band
at 42.9 cm-1 has two such subbands. The perturba-
tions in this band are even stronger, because the
relatively large bifurcation splittings in (H2O)3 in-
terfere with the Coriolis coupling effects. Without the
effective Hamiltonian described in section 5.3, it is
unlikely that this band could have been fit to any
reasonable degree of accuracy. The relatively large
separation between the two subbands is caused by
the linear Coriolis splitting -2úCK of the +|k| and
-|k| sublevels. A stick-figure representation of the
Q-branch of the (H2O)3 band at 42.9 cm-1 is presented
in Figure 14. The two repelling Q-branches are
characteristic of a ‘first-order’ linear Coriolis pertur-
bation.209 The observation of this transition was a
surprise, as the k ) (1 torsional levels in (H2O)3 are
23 cm-1 above the ground state, suggesting that the
expansion is not nearly as cold vibrationally as it is
rotationally.

Also, the perpendicular bands at 28.0 and 98.1
cm-1 for (D2O)3 and at 65.6 cm-1 for (H2O)3 consist
of two subbands, assigned to the k ) +2 r 0 (∆K )
-1) and k ) -2 r 0 (∆K ) +1) torsional transitions.
Similarly, the perpendicular band at 81.8 cm-1 for
(D2O)3 consists of two subbands corresponding to the
k ) 3 r 1 (∆K ) -1) and the k ) 3 r -1 (∆K ) +1)
transitions.

By far the simplest and strongest spectra are the
41.1 cm-1 band of (D2O)3 and the 87.1 cm-1 band of
(H2O)3, both assigned to the parallel (∆K ) 0)
transition between nondegenerate torsional levels
with k ) 0 and 3. The only perturbation observed in

Table 2. Principal Characteristics of the Torsional
Transitions Observed in (D2O)3 and (H2O)3

a

frequency/
cm-1 band type assignment

relative
intensity ref

(D2O)3
28.0 perpendicular k ) (2l r 0 5.0 145
41.1 parallel k ) 3l r 0 125.0 133, 142
81.8 perpendicular k ) 3u r (1l 1.0 145
89.6 parallel k ) -2u r (1l 1.5 124
98.1 perpendicular k ) (2u r 0 5.0 131

(H2O)3
42.9 parallel k ) -2l r (1l weak 146
65.6 perpendicular k ) (2l r 0 weak 146
87.1 parallel k ) 3l r 0 strong 131

a The superscripts l and u refer to the lower and upper set
of levels with k ) 0, (1, (2, 3, see Figure 16.
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the 87.1 cm-1 band for (H2O)3 is a small doublet
splitting of each T-state component arising from |K|
) 1 transitions. This additional splitting, a Coriolis-
induced bifurcation tunneling effect explained by van
der Avoird et al.,22,193 is absent for the A components.
Specifically, it was observed that only the P- and
R-branches of the T lines are split, but not the
Q-branch, and that the splitting is proportional to
J2. This pattern is similar to the effects of ‘axis
switching’ in a slightly asymmetric rotor. With the
aid of the appropriate selection rules, it could be
deduced193 from the J2 dependence and other char-
acteristics of this splitting that, among two possibili-
ties,186 bifurcation tunneling in (H2O)3 prefers the
pathway represented by the PI operations (12)*,
(34)*, and (56)*.

Also, the quartet splitting of the rovibrational
transitions by bifurcation tunneling is very regular
in these k ) 3 r 0 bands, as depicted in Figure 15.
In the (H2O)3 band at 87.1 cm-1, each quartet
component is separated from the other by a constant
289 MHz; only at high values of the rotational
quantum number J does this splitting become slightly
smaller. The nuclear spin intensity ratios for the
bifurcation pattern agree with theory:22,131,186 11:9:
3:1 when K ) 3n and 8:9:3:0 when K * 3n. The
tunneling components that have weight zero when
K * 3n are clearly missing in the spectrum. Similar
quartets in the 41.1 cm-1 band of (D2O)3 show a
bifurcation splitting of 1.5 MHz.

The irregularities in the rotational structure of the
bands caused by transitions to or from degenerate
torsional levels with k ) (1 and (2 are also manifest
in the bifurcation splitting patterns. For example, in
the 81.8 cm-1 band of (D2O)3, most quartets have a
normal intensity pattern 1:5:10:7, consistent with the
group theoretical (G48) nuclear spin statistics of 11:
54:108:76 and 2.7 MHz spacings between each of the

lines. Anomalous quartet intensity patterns were
observed for the |K| ) 0 r 1 transitions, with
approximate intensity ratios of 5:3:5:2. In the (D2O)3
band at 28.0 cm-1, the quartet intensity ratios
observed, for example, in the |K| ) 3 r 2 Q-branch
(approximately 1:5:10:7) are consistent with the G48
nuclear spin statistics, with spacings of 0.9 MHz
between each of the four lines. However, again,
anomalous quartet intensity patterns were observed
for the |K| ) 0 r 1 P-, Q-, and R-branch transitions,
with approximate intensity ratios of 2:9:4:6. For these
quartets the individual lines exhibit an uneven
spacing with a small J dependence. Similar anoma-
lous quartets were observed in the |K| ) 0 r 1
transitions in the 98.1 cm-1 (D2O)3 band.131 All of
these findings were explained by the theory in refs
22 and 193. A perturbation not observed in any of
the other water trimer bands was found in the 65.6
cm-1 band of (H2O)3. In this band the Tg and Tu levels,
the two middle levels in the quartets, are separated
by a constant 255 MHz and the outer Au and Ag
components by a constant tunneling splitting of 765
MHz, i.e., 3 times the 255 MHz spacing. However, it
was noticed that the T components shift considerably
relative to the A components, resulting in separations
between the A and T components that vary from 200
to 300 MHz. This perturbation caused considerable
difficulty in the rotational assignment of the band.

A global fit of the entire experimental (D2O)3 data
set, 554 rovibrational transitions, can be found in ref
145. The quality of the fit is reflected by a root-mean-
square of the frequency residuals of 1.36 MHz, which
is even less than the typical experimental frequency
precision of 2 MHz. Table 3 in ref 145 summarizes
the optimized parameters (torsional energies, rota-
tional and distortion constants, and Coriolis param-
eters) obtained from the final fit. A total of 361
rovibrational transitions was observed and as-
signed146 in the three torsional bands of (H2O)3.
Despite the strong perturbations in the spectrum, a
global fit of all these transitions with the effective

Figure 14. Repelling Q-branches of the 42.9 cm-1 band
of (H2O)3 measured by Brown et al.146 The two subbands
correspond to the k ) -2 r +1 and k ) +2 r -1
transitions, both obeying ∆K ) 0. The Q-branch to the left
is shifted to lower energy by the -2úCK pseudo-first-order
Coriolis interaction, while the Q-branch to the right is
shifted to higher energy by +2úCK. The inset shows a
representative spectrum in a 10 MHz scan.

Figure 15. Q-branch of the 87.1 cm-1 (2610 GHz) parallel
k ) 3 r 0 band of (H2O)3 measured by Brown et al.146 The
quartet tunneling splitting is evident as four Q-branches
separated by a tunneling splitting of 289 MHz. Notice that
the fourth component (Ag symmetry) has a nonzero nuclear
spin weight only when K is a multiple of three.
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Hamiltonian of section 5.3 gave a root-mean-square
deviation of only 0.93 MHz. The A tunneling compo-
nents in each band were fit separately from the T
tunneling components, because of the different tun-
neling splitting patterns predicted by the theory.
Tables 2 and 3 in ref 146 summarize the optimized
parameters (torsional energies, rotational, distortion,
and Coriolis coupling constants, and bifurcation
splitting parameters) obtained from the final fit. The
overall result of these fits of the measured torsional
spectra of (H2O)3 and (D2O)3 is a very precise descrip-
tion of the energies and other characteristics of the
torsional states of both these water trimer isoto-
pomers, up to about 100 cm-1. The rotational con-
stants A ) B and C associated with the different
torsional states of the trimer show an interesting
nonmonotonic dependence on the amount of torsional
excitation energy. This has been quantitatively ex-
plained by Sabo et al.,188,197,198 with the aid of a (3 +
1)-dimensional dynamical model which includes the
symmetric intermolecular stretch coordinate. Calcu-
lations of the vibrationally averaged moments of
inertia of the different torsional states show that the
variations of A ) B and C are the effect of both the
averaging over the torsional angles and a change of
the intermolecular distances accompanying torsional
excitation.

5.5. Three-Body Interactions; Trimer VRT Levels
Next, let us describe the use of water trimer spectra

to further test the pair potential and check the
accuracy of ab initio-calculated water three-body
interactions.152 The explicit calculation113,114 of these
nonadditive interactions was made possible by the
recent extension of SAPT.210-214 It turned out that
the three-body interactions contribute about 15% of
the water trimer binding energy at the hydrogen-
bonded equilibrium geometry and 30% or more to the
hydrogen-bond rearrangement barriers. The domi-
nant three-body interactions are the second- and
third-order polarization effects, but the nonadditive
exchange effects are not negligible, especially for the
rearrangement barriers.

In section 5.2 we outlined the 3-dimensional model
which was employed193 in DVR calculations of the
torsional energy levels, with two different ab initio
potentials, DD and BGLK. These are not global water
potentials, however, in the sense that they do not
depend on all of the 6N - 6 intermolecular degrees
of freedom for an N-molecule system. The DD poten-
tial109 is a polynomial fit of ab initio data in the three
torsional coordinates of the trimer, only valid for a
limited range of angles. The BGLK (also called
modEPEN) potential is a modified form of the em-
pirical EPEN potential of Scheraga and co-workers202

reparametrized by Bürgi et al.187 on the basis of the
same type of 3-dimensional ab initio data as the DD
potential. In principle, this modEPEN potentialsa
site-site modelsis a global potential but if used as
such it exhibits unphysical behavior in some impor-
tant regions of the 12-dimensional configuration
space of the trimer.195,201 Groenenboom et al.152 ap-
plied the dynamical model of van der Avoird et al.22,193

in calculations with the SAPT pair and three-body

potential. The separations of R ) 5.37 bohr between
the centers of mass of the water molecules and the
angles R ) 21.2° describing the nonlinearity of the
hydrogen bonds correspond to the trimer equilibrium
structure and were kept fixed. The three-body con-
tributions to the potential were directly calculated114

on the 3-dimensional grid with 568 symmetry-distinct
points used in the DVR calculations.22,152,193,196 In
similar calculations of the torsional levels in the
water trimer for J ) 0, Wales201 tested the popular
TIP4P water potential,215 employed in many simula-
tions of liquid water, and the ab initio-based modE-
PEN187 and polarizable ASP-W174 potentials. The
modEPEN (or BGLK) potential already tested by
Olthof et al.193 gave reasonable torsional frequencies
but, as we just mentioned, unfortunately fails as a
global potential.195 For the other potentials it was
found, just as in the tests on the dimer spec-
trum,144,151 that the calculated transition frequencies
deviate from the measured spectra by factors of 2 or
3, at least, cf. Figure 6 in ref 201.

Figure 16 shows the torsional levels of the normal
and fully deuterated water trimer calculated from the
SAPT-5s potential for the pair interactions and
additional three-body interactions computed by SAPT
on the 3-dimensional DVR grid. The agreement of the
lower (k ) 0, (1, (2, 3) levels with experiment is

Figure 16. Torsional levels (in cm-1) of the H2O and D2O
trimers for J ) 0. The labels k ) 0, (1, (2, 3 correspond
to the irreducible representations of the (cyclic) permuta-
tion-inversion group G6. The dashed levels are calcu-
lated152,169 from the SAPT-5s pair and three-body potential;
the solid levels are experimental data.145,146 Arrows indicate
the observed transitions. If the three-body interactions
were omitted the torsional flipping barrier would be
substantially lower and the torsional levels would be higher
by about 10% for (H2O)3 and 20% for (D2O)3.
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excellent. For the higher levelssmeasured in (D2O)3s
the deviations are larger but there are several
indications145,188,197,198 that the separation between
the torsional motions and other vibrations of the
trimer starts breaking down at these higher energies.
The torsional levels of both (H2O)3 and (D2O)3 in
Figure 16 agree considerably better with experiment
than those from any of the previously tested global
water potentials.201 The replacement of the SAPT-
5s pair potential by the ‘spectroscopic’ VRT(ASP-W)
potential34 gave a substantial quality degradation:
the resulting torsional levels became much too dense,
as a consequence of the flipping barrier becoming too
high by nearly a factor of 3. The torsional levels
computed with the SAPT-5s-tuned potential (not
shown in Figure 16) are about 14% too low, due to a
30% increase of the flipping barrier. However, it
follows from the analytic pair and three-body SAPT
potential generated by Mas et al.114 that the flipping
barrier in the full 12-dimensional trimer potential
surface is nearly 30% lower than in the 3-dimensional
surface obtained by freezing the center-of-mass sepa-
rations R and the angles R. The compensation of
these two 30% effects will probably bring the levels
from SAPT-5s-tuned into equally good agreement
with experiment as those from SAPT-5s in Figure 16.

Concluding this section, we may say that the
comparison between theory and experiment for the
torsional spectrum of the water trimer clearly con-
firms the conclusion of section 4 that the water
potentials currently in use in simulations of liquid
water and ice are not able to provide a good quanti-
tative description of the intermolecular vibrations
and tunneling processes in water clusters. Two water
pair potentials were recently developed or improved
with the aid of dimer spectroscopic data: the VRT-
(ASP-W) pair potential and the SAPT-5s-tuned
potential. The trimer test indicates, more clearly than
the dimer spectrum, that the SAPT-5s-tuned poten-
tial is to be preferred over the ‘spectroscopic’ VRT-
(ASP-W) pair potential. This is probably related to
the fact that the ab initio calculations by SAPT are
of higher qualityscontaining a higher and more
consistent level of electron correlation in the mono-
mer wave functionssthan the calculations on which
the ASP-W potential is based. Furthermore, the use
of the trimer spectrum has demonstrated that the
three-body nonadditive interactions in water, which
were also calculated by SAPT, are of comparable
accuracy as the pair potential. Simulations with the
use of this more realistic pair and three-body SAPT
potential will hopefully lead to a better understand-
ing of the anomalous properties of water and ice.
Although its functional form is more complicated
than that of the model potentials commonly used in
such simulations, computations with this potential
are very feasible on modern computers.

6. Other Recent Developments
Since the appearance of the 1994 issue of Chemical

Reviews devoted to van der Waals molecules, many
papersstheoretical as well as experimentalswere
published in this field. We will summarize the work
on some systems that have been investigated most

intensively since then. We do not strive for complete
coverage of the literature but rather select a number
of examples that illustrate the progress which was
recently made by theory, experiment, and, especially,
by the two in collaboration.

6.1. Complexes of Nonpolar Molecules

6.1.1. Atom−Linear Molecule Dimers
The argon-N2 system has been revisited by several

workers during the past few years. Dham et al.216

developed an exchange-Coulomb (XC) model potential-
energy surface for this system. It is based upon
results for the Heitler-London interaction energy,
long-range dispersion energies, the temperature de-
pendencies of interaction second virial, binary diffu-
sion, and mixture shear viscosity coefficients, micro-
wave spectra of the van der Waals complex, and
collision broadening of the depolarized Rayleigh light
scattering spectrum. The potential gives good overall
agreement with many different experiments for the
N2-Ar mixture but is still open for improvement, as
appears from simulations of infrared spectra of the
14N2-Ar complex by Wang et al.217 The latter authors
performed exact quantum mechanical calculations
using a modified Morse-Morse-spline-van der Waals
potential and the XC model potential. The spectrum
simulated from the modified Morse-type potential
surface shows distinctly better agreement with ex-
periment than does the spectrum simulated from the
XC model.

Two sets of ab initio calculations on the argon-N2
system appeared recently. The first publication was
by Naumkin218 and the second by Fernández et al.,219

who evaluated the potential by the CCSD(T) model
(coupled cluster singles and doubles with noniterative
triples) in a very good atomic orbital basis set.
Fernández et al. determined the rovibrational spec-
troscopic properties from their ab initio potential and
compared them with the available experimental data.
Considerable improvement was obtained when four
of the potential parameters were refined based on the
Ar-14N2 rotational transition frequencies. Thus, it
was shown that the CCSD(T) method can be used to
predict the spectroscopic properties of van der Waals
complexes but that fine-tuning to experiment re-
mains necessary.

Roche et al.220 considered two new empirical po-
tential surfaces221 for the van der Waals molecule
CO2-Ar, which, just as N2-Ar, consists of two
nonpolar monomers. Pressure broadening of both
infrared and Raman lines was tested against mea-
surements. Thermally averaged infrared and Raman
cross sections at different temperatures showed good
agreement with the experimental data available.
Transport properties, such as diffusion, viscosity, and
nuclear spin relaxation, provided a different test of
the surfaces and agreed well with experiment. Very
recently, ab initio rovibrational spectra were pub-
lished for CO2-Ar.222 These were obtained from a
fairly low-level SAPT potential. Surprisingly enough,
the higher level SAPT potentials did not perform as
well.

The Nijmegen-Warsaw collaboration resulted, apart
from the work on Ar-CH4 reviewed above, in SAPT
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potentials for He-CO,223 Ne-CO,224 He-C2H2,225 and
Ne-C2H2.226 Although, strictly speaking, CO is a
polar molecule, it has such a small dipole that the
Rg-CO dimers (Rg ) rare gas atom) have the
characteristics of nonpolar complexes. The 3-dimen-
sional He-CO potential of Heijmen et al.223 was used
by Simpson and co-workers227 in the calculation of
vibrational relaxation cross-sections and rate con-
stants for the deactivation of CO(v ) 1) by 3He and
4He. The surface was found to resolve the qualitative
discrepancy between theory and experiment which
existed in earlier theoretical calculations. The same
He-CO potential was used to compute cross sections
for state-to-state rotationally inelastic scattering,
which gave results228 agreeing very well with mea-
sured relative integral cross sections for rotational
excitation of CO at energies of 72 and 89 meV. Heck
and Dickinson229 performed classical trajectory cal-
culations of diffusion, viscosity, thermal conductivity,
and thermal diffusion in first-order kinetic theory
using the He-CO SAPT potential. For diffusion and
viscosity, their results are consistent with experi-
ment. The results for thermal diffusion, on the other
hand, suggest that the repulsive part of the SAPT
potential may be too anisotropic.

The Ne-CO SAPT potential224 was used to gener-
ate the infrared spectrum corresponding to the
simultaneous excitation of vibration and internal
rotation in the CO subunit within the complex.224 The
computed frequencies were in good agreement with
the experimental data.230,231 Later a new ab initio
2-dimensional potential-energy surface for the Ne-
CO interaction was described.232 This surface was
obtained by the supermolecule method at the CCSD-
(T) level of theory. This new surface gave modestly
better predictions of scattering cross sections that
depend on close approach of Ne to CO than the SAPT
potential but does not describe the ground-state
geometry as well as the SAPT surface.

Jansen233 computed a potential for Ar-CO using
the coupled pair functional supermolecule method
and subsequently applied it in rovibrational calcula-
tions.234 Tao and co-workers235 used the supermol-
ecule Møller-Plesset fourth-order method to obtain
a surface for rovibrational calculations236 on the same
system. The A-rotational constant of Ar-CO was (re)-
measured by double-resonance microwave-millimeter-
wave spectroscopy,237 and its infrared spectrum was
scanned in the υCO ) 2 overtone region.238 Brookes
and McKellar239 recently measured the rotationally
resolved infrared spectra of Kr-CO and Xe-CO in
the region of the CO stretching vibration, both in a
long-path (200 m) low-temperature (76 K) gas cell
and in a pulsed supersonic jet expansion. van der
Waals bending frequencies and other parameters
were extracted from these spectra through the use
of a simple empirical Hamiltonian. Thus, the proper-
ties of the entire series of rare gas-carbon monoxide
complexes, from He-CO to Xe-CO, are now char-
acterized.

Total differential cross sections and differential
energy loss spectra for He-C2H2 were computed240

from the ab initio SAPT potential mentioned above.
The results were in excellent agreement with the

earlier experimental values of Buck et al.241 The same
He-C2H2 potential was recently employed242 to ob-
tain state-to-state rate constants for the collisional
rotational (de)excitation of acetylene by He and
pressure broadening coefficients. The computed pres-
sure broadening coefficients and rate constants agree
well with the experimental data. In fact, the theory
revealed that the interpretation of the experimental
data required accounting for the influence of multiple
collisions.

The Ne-acetylene SAPT points were fit to an
analytic form and applied in calculations of the
rovibrational energy levels of Ne-C2H2 and Ne-
C2HD.226 From these levels and calculated transition
intensities the near-infrared spectra of these com-
plexes were generated in the region of the v3 band,
which is the C-H stretching vibrational band lying
around 3300 cm-1. For Ne-C2H2, the results obtained
from the ground-state surface gave semiquantitative
agreement with the measured spectrum. For Ne-
C2HD, all of the (much sharper) lines in the experi-
mental spectrum could be assigned. The v3 excited-
state interaction potential was obtained from a fit of
the calculated spectrum to the experimental one. The
ground-state ab initio potential was not altered in
this fit; the excellent agreement between the calcu-
lated and measured infrared spectrum for Ne-C2HD
demonstrated that the Ne-acetylene SAPT potential
is quite accurate.

6.1.2. Ar−Benzene

Much attention has been given to another nonpolar
system, namely, the Ar-benzene dimer. Brupbacher
et al.243,244 measured the rotational spectra of normal
and deuterated benzene-Ar complexes. They mod-
eled the intermolecular motions with a potential
containing three adjustable parameters. These pa-
rameters, one of which represents the equilibrium
distance of the rare gas atom from the plane of
benzene, were obtained by a fit of the observed
rotational transition frequencies.

Riedle et al.245 measured rotationally resolved
vibronic spectra of C6H6-Ar and C6D6-Ar. The
lowest energy van der Waals band of both complexes
displayed a completely unexpected rotational struc-
ture. This could neither be explained by a genuine
perpendicular nor by a parallel transition. This
situation was analyzed in detail by Riedle and van
der Avoird,208 who deduced the final vibronic assign-
ments. To that end they performed calculations of the
van der Waals states of electronically excited ben-
zene-Ar and included the coupling to the vibronic
angular momentum of the excited state of benzene.
A detailed analysis of the degenerate intermolecular
bending fundamentals in the experimental UV spec-
tra of C6H6-Ar was given and found to agree with
the theory.

Recently, two experimental studies appeared that
report accurate measurements of a number of inter-
molecular vibrational transitions of ground-state
benzene-Ar. Kim and Felker246 reported the results
of nonlinear Raman spectroscopy on the intermolecu-
lar transitions of C6H6-Ar and C6D6-Ar. They as-
signed unambiguously the five lowest vibrational
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transitions. Neuhauser et al.247 were able to measure
by coherent ion-dip spectroscopy rotationally resolved
spectra of high-lying overtones of the intermolecular
vibrations of the benzene-Ar complex. The small
isotope shifts upon deuteration of the benzene mol-
ecule could be measured and compared with the
simple classical harmonic oscillator and with anhar-
monic 3-dimensional quantum calculations. By com-
paring the latter calculations with the experimental
results, the quality of several benzene-Ar interaction
potentials could be discussed.

Very recently a stringent upper limit of 316 cm-1

for the value of the dissociation energy D0 of the
neutral C6D6-Ar complex was found by Meijer and
co-workers.248 This limit was extracted from infrared
absorption spectra of C6D6 cations, complexed with
Ar, throughout the 450-1500 cm-1 region via IR-
laser-induced vibrational dissociation spectroscopy.

Koch et al.249 calculated by an ab initio coupled
cluster method the equilibrium dissociation energy
De of the benzene-argon van der Waals complex in
the ground state S0. They quote a dissociation energy
De ) 389 ( 2 cm-1 for the ground state S0. Later they
extended the calculations to obtain the ground-state
potential-energy surface250 and performed full 3-di-
mensional vibrational calculations. They find D0 )
328.1 cm-1 for C6H6 and D0 ) 330.6 cm-1 for C6D6.
The latter number is 14.6 cm-1 higher than the recent
experimental (upper bound) value of Meijer et al.248

The S0-S1 excitation energies were computed by
determining poles of a coupled cluster linear response
function.251 Thus, they were able to obtain a potential-
energy surface for the excited S1 state as well.

Work that is similar to that on benzene-Ar has
recently been performed on jet-cooled neutral and
ionized aniline-Ar,252 on aniline-Ne253 (vibrational
predissociation studies), on complexes of Ar and Ne
bound with 4-fluorostyrene254 and on p-difluoroben-
zene-Ar255 (UV spectra with rotational resolution
including several van der Waals modes), on dimers
of 1- and 2-fluoronaphthalene with Ar and CH4

256 and
indole-Ar257 (high-resolution UV spectra), and on
o-xylene-Ar258 and some dimethylnaphthalene com-
plexes with Ar and Ne259,260 (two-color resonant two-
photon ionization spectra). For several of these
complexes the measurements were accompanied by
3-dimensional quantum calculations254,258-261 of the
intermolecular vibrations and rotational constants.

6.1.3. Trimers and Larger Clusters

The experimental and theoretical work on trimers
and three-body interactions up to 1994 has been
reviewed by Elrod and Saykally262 and by Chalasiń-
ski and Szczȩśniak.31 Much relevant work has ap-
peared since then. Since we already discussed the
three-body interactions in the water trimer in section
5.5, here we will concentrate on some nonpolar
systems.

In contrast with the water trimer and other hy-
drogen-bonded systems, where classical polarization
effects provide the dominant nonadditive interaction,
the situation in clusters composed of nonpolar mol-
ecules is much more complex. At least two of the
monomers in a trimer or larger cluster need to be

polar to obtain important second-order nonpairwise-
additive polarization interactions. Prototype trimers
which have been studied intensively are the argon
trimer and Ar2-HX (with X ) F or Cl). The latter
system is more easily accessible to spectroscopy than
the former because the HX with its strong dipole
plays the role of an infrared chromophore. In both of
these trimers there is a subtle balance between
nonadditive interactions210,211,263,264 of different ori-
gin: second-order induction (which is merely due to
charge cloud penetration and hence is relatively
small), third-order dispersion (including the well-
known Axilrod-Teller triple dipole interaction), third-
order induction and mixed induction-dispersion,
first-order triple-exchange effects, and mixed elec-
trostatic-exchange, induction-exchange, and disper-
sion-exchange contributions. An example of an
important mixed electrostatic-exchange contribution
in Ar2-HF is the electrostatic interaction of the
permanent multipoles of HF with the quadrupole
caused by electron exchange between the two Ar
atoms as they overlap. This contribution was modeled
by Ernesti and Hutson265,266 in their attempts to
extract the nonadditive intermolecular forces in Ar2-
HF and Ar2-HCl from the spectra of these van der
Waals trimers.

Ab initio supermolecule studies of the nonadditive
interactions in Ar2-HF and Ar2-HCl have been
made by Chalasiński and collaborators.267-270 Re-
cently, the explicit and direct ab initio calculation of
each of the above-mentioned three-body components
of the interaction energy became possible by the
extension of SAPT.210-212 Moszynski et al.271 applied
this three-body SAPT method to study Ar2-HF, while
Lotrich et al.263,264 applied it both to Ar3 and to Ar2-
HF. In the Ar2-HF studies, it was concluded that
the anisotropy of the nonadditive interactions is
determined by a subtle balance between the various
attractive and repulsive contributions. All of the
above-mentioned exchange, induction, dispersion,
and mixed terms occurring in first, second, third, and
even fourth order of perturbation theory are impor-
tant. Some of these aresimplicitlysincluded already
by Hartree-Fock calculations; others involve electron
correlation effects. Some of the terms, such as the
second- and third-order (penetration) induction, are
nearly canceled by the corresponding exchange con-
tributions, for mostsbut not allsgeometries. Fur-
thermore, it was shown that the semiempirical
exchange quadrupole model of Ernesti and Hut-
son,265,266 describing the nonadditive mixed electro-
static-exchange contributions, can be given a theo-
retical basis. The ab initio data will be useful for
modeling the geometry dependence of these three-
body interactions. Also, for Ar3 it was concluded from
the SAPT analysis263 that there are several three-
body contributions of nearly equal importance. The
geometry dependence of the total three-body interac-
tion in Ar3 follows that of the Axilrod-Teller disper-
sion term. This is not because other terms are less
important, but rather because they cancel each other
to a large extent.

With regard to the computation of rovibrational
states, we mention that González-Lezana et al.272,273
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used a variational method in terms of atom-atom
distance coordinates and a basis of distributed Gaus-
sians to investigate the stability and geometrical
properties of He, Ne, and Ar trimers. Wright and
Hutson274 presented a new method for calculating the
energy levels and wave functions of rare gas trimers,
based upon a potential-optimized DVR. This method
was applied to Ar3, while for several mixed rare gas
trimers Ernesti and Hutson275 used the older method
of Cooper et al.276 The latter calculations investigate
the effects of different rare gas pair potentials and
of the Axilrod-Teller three-body interactions on the
rotational constants of the mixed rare gas trimers.
Some of these have been measured by Xu et al.277

using microwave spectroscopy. In their experiment
to confirm the existence of a stable He dimer by
diffraction through a grating, Schöllkopf and Toen-
nies278 found a stable He trimer as well.

Four intermolecular vibrational states of the weakly
bound trimers Ar2-HF and Ar2-DF have been
studied via high-resolution infrared spectroscopy.279

These van der Waals vibrational states, accessed as
combination bands built on the υ ) 1 HF or DF
intramolecular stretch, correlate adiabatically with
j ) 1 motion of a hindered HF/DF rotor and cor-
respond to a librational motion either in or out of the
molecular plane. Ernesti and Hutson265,266 calculated
the vibrational frequencies and rotational constants
of these trimers including all five intermolecular
degrees of freedom. The intramolecular vibrational
states of the HX molecules were separated out
adiabatically, so that the calculations could be carried
out on effective intermolecular potentials for each HX
vibrational state. The calculations were performed
both on pairwise additive potentials, derived from
well-known Ar-Ar and Ar-HF potentials, and on
nonadditive potentials incorporating different three-
body forces. On a pairwise additive surface, the
intermolecular vibrational frequencies are found to
be as much as 11% higher than the experimental
values; this indicates the presence of repulsive three-
body contributions to the angular potential. Inclusion
of the conventional three-body induction and Axil-
rod-Teller dispersion terms can only account for 30%
of the observed discrepancies. The other 70% of the
vibrational shifts can be attributed to three-body
exchange effects, i.e., the strongly anisotropic inter-
action of the HF/DF dipole with the exchange quad-
rupole formed by Ar-Ar. Inclusion of all three
nonadditive terms (dispersion, induction, and ex-
change) improves the agreement with experiment by
up to an order of magnitude. The in-plane and out-
of-plane bending vibrations of HF in the Ar2-HF
cluster were also investigated by Chuang et al.,280

who recorded infrared spectra in the υHF ) 3 overtone
region.

Xu et al.281 determined rotational spectra of four
different H/D, 20Ne/22Ne, and 35Cl/37Cl isotopomers of
the Ne-Ar-HCl trimer by means of pulsed molecular
beam Fourier transform microwave spectrometry.
Nuclear quadrupole hyperfine structures due to the
35Cl/37Cl and D nuclei were observed, assigned, and
used to provide information about the angular ani-
sotropy of the Ne-Ar-HCl potential-energy surface.

Structural parameters of the trimer were determined
from the rotational constants obtained, and a pseudo-
triatomic harmonic force field analysis was performed
to provide qualitative frequency predictions of the
heavy atom van der Waals vibrational motions.

Also, clusters of HF and DF with up to 14 Ar atoms
were investigated, both experimentally and theoreti-
cally. Particular attention was given to the (devia-
tions from) additivity of the ‘matrix’ or ‘solvation’ shift
of the HF stretch frequency with the increase of the
number of Ar atoms. Some earlier studies282,283 on
Arn-HF clusters with n ) 1, ..., 14 in which the Ar
cage was frozen at the equilibrium geometry have
shown that a coordination number of n ) 12, which
completes the first solvation shell of HF, produces a
red shift close to the value observed for a solid argon
matrix. Both Lewerenz284 and Niyaz et al.285 treated
the zero-point motions of Arn-HF clusters with n )1,
..., 4 by means of diffusion quantum Monte Carlo
(DQMC) calculations, and Dykstra286 applied the
same method for clusters with n up to 12. Niyaz et
al. used the best available Ar-Ar and Ar-HF pair
potentials and concluded from small but systematic
differences between the calculated and measured red
shifts that nonadditive interactions need to be in-
cluded. Lewerenz used the same pair potentials, as
well as a nonadditive potential that includes a simple
isotropic Axilrod-Teller dispersion contribution. Dyk-
stra used simple model pair potentials, again with
only Axilrod-Teller nonadditive terms. Hutson et
al.287 employed a more complete nonadditive potential
in their theoretical studies of Arn-HF clusters with
n ) 2, 3, 4, and 12. Just as in the earlier studies,282,283

they used a fixed Arn cage which was first optimized
by simulated annealing and solved the resulting
5-dimensional Schrödinger equation for the hindered
rotational and translational motion of the ground-
state and excited HF molecule in the field of the Ar
atoms. The nonadditive potentials, which include
dispersion, induction, and exchange distortion effects,
are found to account remarkably well for the observed
frequency shifts. Even larger Arn-HF clusters with
n ) 62 were theoretically investigated288 by classical
molecular dynamics simulations with the use of a
model potential based on the diatomics-in-molecules
(DIM) approximation. Also, these studies concen-
trated on the effect of many-body interactions on the
red shift in the HF frequency. The infrared spectro-
scopic data for Arn-HF with n ) 1, 2, 3, 4 and for
Arn-DF with n ) 1, 2, 3 to which the results of
theoretical studies have been compared were pro-
vided by Nesbitt and co-workers.289,290

6.2. Hydrogen-Bonded Complexes

6.2.1. HF and HCl Dimers

Not only the water dimer discussed in section 4,
but also the hydrogen halide dimers (HCl)2 and (HF)2

have been the focus of a growing body of experimental
and theoretical research, because they are prototypes
of hydrogen-bonded systems. Quack and Suhm291 and
Bačić and Miller292 may be consulted for a summary
of experimental and theoretical information on the
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HF dimer available up to 1996. We will review the
work on the HF dimer performed since then. This
four-atom complex is planar at equilibrium and has
two equivalent minima distinguished by an inter-
change of proton acceptor and donor. The experimen-
tal splitting293,294 due to tunneling from the one
minimum to the other is 0.658 690 cm-1 in the
ground state. The stretch frequency of 3961.57 cm-1

of free HF is downshifted by 31 cm-1 for the acceptor
HF (v1) and by 93 cm-1 for the donor (v2). The donor-
acceptor interchange splittings of the excited states
are reduced with respect to the ground state; they
are -0.215 and +0.234 cm-1 for the v1 and v2 states,
respectively.

Peterson and Dunning295 performed high-level ab
initio calculations to obtain the binding energy and
structure of the HF dimer. They find as best esti-
mates for the equilibrium properties De ) 4.60 kcal/
mol, RFF ) 2.73 Å, rdonor ) 0.922 Å, racceptor ) 0.920 Å,
a slightly bent hydrogen bond (7°), and an angle of
the free HF bond with RFF of 111°. These computa-
tions were confirmed by Schaefer and co-workers.296

The latter workers also gave the harmonic vibra-
tional frequencies and IR intensities for (HF)2. Later
Schaefer et al.297 improved their basis set and found
De ) 4.91 kcal/mol and D0 ) 3.07 kcal/mol, where
the last number is within the harmonic approxima-
tion. Klopper et al.298 performed explicitly correlated
coupled cluster calculations on (HF)n for n ) 2, 3, 4,
5 and found De ) 4.6 kcal/mol for (HF)2, in exact
agreement with the value of Peterson and Dunning.

In the calculation of the VRT states of the dimer
one needs full potential-energy surfaces, either 4D
(HF bond lengths frozen) or 6D (all internal coordi-
nates included). A 6D (HF)2 potential-energy surface
often used is the semiempirical SQSBDE potential
of Quack and Suhm.299 This potential was obtained
by adjusting an older ab initio (coupled pair func-
tional) potential such that the dimer rotational
constant B and the dimer binding energy D0 are
reproduced by quantum Monte Carlo calculations.
Recently Stone and co-workers300 presented a new ab
initio 4D potential for the HF dimer. This potential
is extended to larger clusters, the induction energy
accounting for many-body contributions to the en-
ergy. A few months after Stone’s potential appeared,
Quack and co-workers301 reported a new 6D potential
based on a large number of ab initio explicitly
correlated second-order Møller-Plesset points. Again,
they adjusted the potential to experiment obtaining
two semiempirical pair potentials labeled SC-2.9 and
SO-3. These intermolecular potentials are combined
with a four-parameter intramonomer potential of
generalized Poschl-Teller type.

The SQSBDE surface mentioned above was used
by Zhang et al.302 in 6D quantum calculations of the
vibrational levels of (HF)2, (DF)2, and HF-DF, for
total angular momentum J ) 0. The ground-state
tunneling splitting for the HF dimer from converged
6D calculations, 0.44 cm-1, agrees exactly with the
result of a 6D bound-state calculation for (HF)2 by
Necoechea and Truhlar.303,304 Zhang et al., again
using the SQSBDE potential, also computed J ) 0
energy levels with excited monomer stretches; they

considered (v1v2) ) (01), (10), (02), (20), and (11).
These states are narrow resonances in the dissocia-
tion continuum. The calculated fundamental transi-
tion frequencies are v1 ) 3940.6 cm-1 and v2 ) 3896.4
cm-1. These values are 10 and 28 cm-1 higher than
the corresponding experimental values. Also, vibra-
tional predissociation lifetimes were computed for vHF
) 1 states by means of a 4D golden rule method.305

Similar calculations were performed by Truhlar and
co-workers,306 who obtained converged energies and
tunneling splittings of the intramolecular stretching
fundamentals and high-frequency, low-frequency com-
bination levels on three different potential-energy
surfaces, one of which was the SQSBDE surface. Wu
et al.,307,308 also using the SQSBDE potential, were
the first to consider total J > 1 in 6D computations
on (HF)2. They computed the lowest 40 states for 0
e J e 4 and parity (-1)J. They found that for these
low J values, Coriolis couplings are unimportant.

Very recently the SO-3 potential301 was used by
Vissers et al.309 in 6D calculations. It gives a ground-
state tunneling splitting of 0.59 cm-1, significantly
closer to the experimental value of 0.66 cm-1 than
the splitting of 0.44 cm-1 obtained with the SQSBDE
potential. Also, the acceptor and donor HF stretch
frequencies are much better: v1 ) 3929.2 cm-1 and
v2 ) 3867.1 cm-1, close to the experimental values of
v1 ) 3930.90 cm-1 and v2 ) 3868.08 cm-1. Even the
small excited-state interchange splittings are repro-
duced fairly well: -0.18 and +0.17 cm-1 for v1 and
v2, respectively, while the values obtained302 from the
SQSBDE potential are -0.13 and +0.09 cm-1. Clearly,
the SO-3 potential of Klopper et al.301 is an improve-
ment over the SQSBDE potential.

Chang and Klemperer measured the vibrational
second overtones of HF dimer310 and introduced a
phenomenological model311 for the vibrational depen-
dence of hydrogen interchange tunneling in this
dimer.

We conclude this brief review on the HF dimer by
mentioning a series of four recent near-infrared
studies by Nesbitt and collaborators,312-315 which
characterize all four intermolecular modes of both
(HF)2 and (DF)2. A large number of bands has been
observed and assigned in which the low-frequency
intermolecular modes: the van der Waals stretch (v4),
the geared and anti-geared bend (v5 and v3), and the
torsional mode (v6) are excited in combination with
both of the high-frequency intramolecular HF
stretches v1 and v2 of the hydrogen-bond acceptor and
donor. This very complete experimental data set,
which in addition to the vibrational frequencies
includes the tunneling splittings, rotational con-
stants, and predissociation rates of each of the excited
states, may serve as a benchmark for testing 6D
potentials.

Experimental studies have revealed that (HCl)2
differs from (HF)2 in several respects. The dissocia-
tion energy of the HCl dimer,316 D0 ) 431 ( 22 cm-1,
is much smaller than the D0 of 1062 ( 1 cm-1 for
(HF)2.317 The distance between the two HCl subunits
of HCl dimer is about 40% larger than the separation
of the HF subunits in (HF)2. The ground-state tun-
neling splitting318,319 of (HCl)2 is 15.5 cm-1, more than

van der Waals and Hydrogen-Bonded Complexes Chemical Reviews, 2000, Vol. 100, No. 11 4135



20 times that of (HF)2, indicating that (HCl)2 is much
floppier than (HF)2.

Elrod and Saykally320,321 calculated the VRT states
of (HCl)2 while keeping the HCl bond lengths fixed
at 1.278 Å. They obtained an intermolecular potential-
energy surface, the ES1 surface, from an earlier 6D
ab initio potential322,323 by performing a direct non-
linear least-squares fit of eight of the ab initio
parameters to 33 microwave, far-infrared, and near-
infrared spectroscopic quantities. The global mini-
mum (De ) 692 cm-1) is located near the planar
hydrogen-bonded L-shaped geometry (R ) 3.746 Å,
Θ1 ) 9°, Θ2 ) 89.8°). The tunneling splitting obtained
from this 6D potential in a 4D calculation is 15.66
cm-1.

Qiu and Bačić324 used the ES1 potential in 6D
quantum calculations and found by comparison of the
results with experimental data that the ES1 potential
is indeed substantially more accurate than the earlier
ab initio surface322,323 but also that there is room for
further refinement. In a later paper24 Qiu et al.
presented 6D computations of the vibrational levels
of the v1 and v2 HCl stretch excited (HCl)2 for J ) 0.
The ab initio potential322,323 as well as the ES1
potential were found to give tunneling splittings for
the vibrational eigenstates of the v1/v2 excited dimer
that are 2 orders of magnitude smaller than the
corresponding experimental values. To fix this prob-
lem, a 6D electrostatic interaction potential was
added to the ES1 potential; the resulting potential
is designated ES1-EL. Calculations on the ES1-EL
surface yield v1/v2 tunneling splittings that are about
75% of the corresponding experimental values. Fi-
nally, we mention a recent (HCl)2 potential325 that
to our knowledge has not yet been applied in VRT
calculations.

We wish to end the review on (HCl)2 by referring
to two recent experimental papers on the dimer and
its isotopomers. The first regards the dipole moment
of the complex: By focusing of HCl and DCl dimers
in an electrostatic hexapole field, the electric dipole
moments for both (D35Cl)2 and (D37Cl)2 were deter-
mined to be 1.5 ( 0.2 D, which is the same value as
that observed for (HCl)2.326 Second, Liu et al.327 report
overtone spectra of (H35Cl)2 and its Cl isotope mixed
dimers obtained by using IR cavity ringdown laser
absorption spectroscopy. Their findings indicate that
the H35Cl-H37Cl and H37Cl-H35Cl heterodimers are
distinguishable at the eigenstate level in the first
overtone excited state (2v1), whichsas we just
discussedsis not the case for the ground and HCl
stretch fundamental eigenstates because of tunnel-
ing.

Also, trimers and larger clusters of HF, DF, and
HCl were studied experimentally and theoretically,
see the review by Bačić and Miller292 and the recent
work of Quack et al.328 The measured properties of
these, mostly cyclic, hydrogen-bonded clusters will
serve as a testing ground for the many-body interac-
tions calculated ab initio.298

6.2.2. Water Clusters

In section 4 we mentioned that high-resolution
infrared spectra have been taken of water clusters

up to the hexamer,119,124-126,129-147 but so far we have
only discussed the dimer and the trimer. The equi-
librium structures of the tetramer and pentamer
correspond to a cyclic hydrogen-bonded geometry,
just like the trimer, with each water molecule acting
simultaneously as proton donor and proton acceptor.
The tetramer has a square-planar system of hydrogen
bonds, and the pentamer has a slightly puckered
pentagonal hydrogen-bonded framework. In both
cases the external, non-hydrogen-bonded, protons lie
above and below the planes of the hydrogen-bonded
‘skeletons’ (denoted ‘up’ and ‘down’ or u and d). For
(H2O)4 the u and d protons alternate and the sym-
metry group of the equilibrium structure is the point
group S4. Two equivalent minima of this type exist,
udud and dudu. From the spectra137-139 it is known
that they are connected by a tunneling process which
involves a concerted u-d flip of all four external
protons and leads to a feasible permutation-inver-
sion group G8 isomorphic to C4h. This rather high-
barrier process was theoretically studied by Wales
and Walsh329 and, in 4D quantum calculations, by
Leutwyler and co-workers.330,331 The tunneling split-
tings calculated331 for (H2O)4 and (D2O)4 with the use
of a high-quality 4D ab initio potential330 do not agree
at all with the experimental values.137-139 Three
different possible explanations are given for this
discrepancy,331 but the problem has not been resolved
yet.

In some respects, the water pentamer is more
similar to the trimer than the tetramer. Just as in
the trimer, it has a ‘frustrated’ equilibrium structure,
uudud, with two neighboring protons on the same
side of a nearly planar hydrogen-bonded framework
and no spatial symmetry. It is connected to another
global minimum, dudud, by the up-down flip of one
of these two protons. In the pentamer this proton flip
is accompanied by a wagging motion of one of the
flaps of the puckered hydrogen-bonded framework.332

There are 10 equivalent global minima intercon-
nected by this tunneling process, and G10, isomorphic
to C5h, is the feasible PI group. Just as in the trimer,
there is also a bifurcation tunneling process, which
increases the number of accessible minima by a factor
of 25 and yields the PI group G320 in this case. Both
Wales and Walsh333 and Graf et al.332 performed 1D
model calculations for the flipping motions with the
use of an ab initio potential and compared their
results with the experimental data.135,140,143

The high-resolution far-infrared studies of water
clusters up to the hexamer134-141,143 have been both
preceded and succeeded by ab initio calcula-
tions110,112,179,334-336 and by rigid-body diffusional
QMC studies.136,337,338 The ab initio calculations pre-
dicted the equilibrium geometries and harmonic
vibrational frequencies. The QMC calculations of
Clary and co-workers136,337 made use of the ASP
model potential174 and focused on the effect of the
strongly anharmonic zero-point motions on the ro-
tational constants. Especially for the hexamer, this
has led to an interesting result: it is the smallest
cluster that does not have the cyclic hydrogen-bonded
ring structure as the lowest energy minimum. The
rotational constants from QMC calculations in con-
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junction with the experimental data136,141 established
that it has a cage-like structure.136 An interesting
observation is that without the inclusion of the zero-
point vibrational energy, this cage-like structure
would probably not be the most stable one. Also,
Severson and Buch338 applied the rigid-body QMC
method to the water hexamer and obtained rotational
constants. After developing a nodal optimization
scheme in which the fundamental excited-state nodes
are constructed from harmonic normal coordinates,
they could study 10 low-lying intermolecular excited
vibrational states of the cage form of (H2O)6, in
addition to the ground state. They found substantial
anharmonic effects and assigned the band observed
by Liu et al.136 to a transition involving primarily
flipping motions of the free O-H bonds on the doubly
bound monomers. A more generally applicable way
to obtain anharmonic excited states from QMC
calculations is by the projector Monte Carlo method
of Blume and Whaley. This method has recently been
tested339 on the torsional excitations in the water
trimer, extensively discussed in section 5. Also, the
water heptamer and octamer were studied by ab
initio methods,340-346 while the isomerization and
melting behavior of the hexamer and octamer were
simulated by classical Monte Carlo (MC) and molec-
ular dynamics (MD) methods.347,348 Dang349 employed
a classical MD method with a polarizable model
potential to find the equilibrium geometry of the
nonamer and decamer.

Clusters larger than the hexamer, with n ) 7, 8,
9, and 10, have been studied experimentally by
looking at the O-H and O-D stretch vibrations.
Recent developments are: infrared cavity ringdown
laser absorption spectroscopy with rotational resolu-
tion130 and the combination of infrared spectroscopy
with size selection by He beam deflection and mass
spectrometry.350-352 This work is summarized in the
review article of Buck and Huisken in the present
issue of Chemical Reviews. References to older work
are given in the papers cited. In the discussion of the
HF dimer in section 6.2.1, we observed that the red
shift of the H-F stretch frequency is much larger for
the proton donor than for the acceptor. In the water
dimer, the donor O-H (or O-D) shift is much larger
for the bound proton than for the free proton. From
ab initio calculations341,353,354 it follows that for larger
clusters this shift depends also on the involvement
of the water monomers in other hydrogen bonds. One
can distinguish so-called single-donor and double-
donor, as well as single-acceptor and double-acceptor,
molecules by their different shifts of the O-H stretch
frequency. In this manner it was possible, with the
help of ab initio and model potential calculations,351,352

to derive the structure of these larger water clusters
from their O-H vibrational spectra, without the use
of rotationally resolved spectra. It was thus estab-
lished that the water octamer has a cubic structure
with two isomers of D2d and S4 symmetry existing
simultaneously.351 These are the same forms of the
water octamer cube as found in a water octamer-
benzene complex by resonant ion-dip infrared spec-
troscopy.355,356 Also, the assignment of the latter
spectra employs the O-H frequency shift as a

signature; these shifts were computed by a density
functional method. The pure water heptamer has two
isomers as well,352 which are derived from the S4

cubic octamer by removal of either a double-donor
or a double-acceptor water molecule. The nonamer
is derived from the octamer by insertion of a two-
coordinated molecule into one of the cube edges; the
decamer structure is obtained by a second similar
insertion.351

Also, the hydrogen bonding of water to other
species such as methanol,357-359 phenol, indole,360-363

and benzyl alcohol364 has received attention through
the spectroscopic and theoretical study of mixed
dimers and larger clusters. In particular, the phenol-
water dimer has been studied in great detail by UV
spectroscopy with rotational resolution,365,366 by mass-
resolved UV spectral hole burning,367 by infrared-UV
and stimulated Raman-UV double resonance tech-
niques,368 and by microwave spectroscopy,369 as well
as theoretically.370

6.2.3. Benzene−Water, π-Electron Hydrogen Bonding

The hydrophobic interaction between water and
aromatic molecules which stabilizes water cluster-
benzene complexes344,355,356 has been studied in detail
in a series of spectroscopic papers on the water-
benzene dimer. The water-benzene interaction may
be conceived as bonding of the positive hydrogen side
of a water molecule to the negative π-electron cloud
of benzene. Its binding energy D0 ) 855 ( 32 cm-1

for C6H6-H2O and 936 ( 40 cm-1 for C6H6-D2O
deduced from measurements of ionization thresholds
by Courty et al.371 is not much lower than the
dissociation energy of a normal hydrogen bond in the
water dimer, D0 ) 1077 cm-1 for (H2O)2 and 1214
cm-1 for (D2O)2 (see section 4.3), and substantially
higher than that of the nonpolar Ar-benzene com-
plex, D0 ) 328 cm-1 for C6H6 and 331 cm-1 (or 316
cm-1) for C6D6.248,250 Structural information has been
obtained from the microwave spectra of several
isotopomers of benzene-water.372,373 The C6H6 to H2O
center-of-mass distance R is 3.329 Å, and the oxygen
is on the 6-fold axis of benzene. The hydrogens of H2O
are closer to the benzene plane than the oxygen by
0.48 Å. The 6-fold axis of benzene coincides with the
a-axis of the complex; hence, there is little or no tilt
of the benzene molecule. The C2 axis of H2O is not
coincident with the a-axis but is at an angle of 37°
to it. It is evident from the spectra that the complex
is not nearly rigid: the dimers of the parent C6H6

benzene with H2O, HDO, D2O, and H2
18O have

symmetric top spectra characteristic of two coaxial
rotors with a symmetric top frame and a very low
effective 6-fold barrier. The dimers of H2O and D2O
with 13C and D monosubstituted benzenes have
asymmetric top spectra, with a 2-fold term of only
≈0.5 MHz in their barriers. The hyperfine structure
from the proton-proton magnetic dipole interaction
and the deuterium quadrupole interaction demon-
strates effective nuclear equivalence in dimers with
H2O and D2O. The symmetries found for their
nuclear spin functions correlate with the lowest
rotational levels of free water, the m ) 0 internal
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rotor state with 000 and the m ) 1 state with 101 and
111. For the m ) 1, K ) 0 transitions of C6H6-H2O,
the correlation is with 111 and for the K ) 1 with 101.
These assignments are reversed for C6H6-D2O.

Also, by resonant ion-dip infrared spectroscopy374,375

of benzene-H2O and benzene-HOD, it was found
that there is nearly free internal rotation of H2O
about benzene’s 6-fold axis in both ground and
vibrationally excited states. A 2-dimensional model
involving free internal rotation and torsion of HOD
in its plane is used374,375 to account for the qualitative
appearance of the spectrum. The O-H (υ ) 0) and
O-H (υ ) 1) torsional potentials which reproduce the
qualitative features of the spectrum are slightly
asymmetric double-minimum potentials which allow
large-amplitude excursions of HOD over nearly 180°.
Reference 376 presents a theoretical investigation of
benzene-water by diffusion QMC methods. Simula-
tions were performed for four isotopomers of C6H6-
H2O with two different site-site model potentials:
one of Lennard-Jones plus Coulomb type and one
that was obtained from a fit of 153 ab initio data
points.377 Although the minimum energy structure
can be considered to have only a single hydrogen
bond, vibrational averaging renders the hydrogens
indistinguishable, a prediction in agreement with the
experimental observation that the complex is a
symmetric top. The results include zero-point ener-
gies, vibrationally averaged structures, rotational
constants and wave functions. By calculating transi-
tion states and rearrangement mechanisms, it is
possible to characterize the tunneling dynamics and
calculate the associated tunneling splittings. Kim et
al.378 performed 6-dimensional DVR calculations of
the J ) 0 intermolecular states in the benzene-H2O
complex up to about 110 cm-1 by a filter diagonal-
ization method. They used the same site-site model
potential from ref 377 as the QMC study of ref 376.
The results are interpreted in terms of five internal
rotation states, a doubly degenerate bending mode
and a nondegenerate stretching mode, the latter two
modes involving the relative translation of the mono-
mers in the complex. The internal rotation states are
discussed in terms of the model of Pribble et al.375 It
is shown that this model is largely successful in
identifying the important features of the low-energy
benzene-H2O states that involve rotation and/or
libration of water.

Benzene-water clusters with more than one water
molecule have been investigated experimentally by
Zwier and co-workers344,355,356 and by Maxton et al.379

It was mentioned already in section 6.2.2 that Zwier
and co-workers used resonant ion-dip infrared spec-
troscopy to measure shifts of the O-H stretch vibra-
tions. Maxton et al. report species-selective spectra
of intermolecular vibrational transitions in C6H6-
(H2O)n clusters with n ) 1, ..., 5, measured by mass-
selective, ionization-loss stimulated Raman spectros-
copy. The spectra exhibit prominent Raman activity
in the range of 35-65 cm-1. In addition, Raman
bands at less than 10 cm-1 are found for the n ) 1
and 3 species, and rotational Raman features are
observed for all of the clusters. It is argued that much
of the Raman activity is due to intermolecular vibra-

tions in which water moieties move collectively across
the plane of the benzene. Sorenson and Clary380

performed a rigid-body QMC study of the vibra-
tionally averaged structure, binding energy, and
rotational constants of benzene-(H2O)2. Estimates of
some rearrangement tunneling splittings were given
as well.

6.3. Conclusion

This selection from the recent literature shows that
impressive progress has been made since 1994, both
in theory and experiment. Since this is mostly a
theoretical paper, we will not try to summarize the
experimental developments. Instead, we refer to the
experimental papers in this Chemical Reviews issue.
On the theoretical side, one observes that high-
quality intermolecular pair potentials can now be
obtained from ab initio calculations for molecules of
size up to benzene, either by the use of supermolecule
methods or by symmetry-adapted perturbation theory
(SAPT). Still, some systems, like the CO dimer,381

appear to resist the computation of a reliable poten-
tial and require a level of electron correlation that is
even higher than the CCSD(T) method. Also, three-
body interactions can be reliably computed by ab
initio methods, although the large number of coor-
dinates needed to describe a full three-body potential
surface makes it difficult to obtain good analytic
representations of these interactions. Quantum dy-
namical methods to treat large-amplitude motions
have now arrived at six fully coupled degrees of
freedom, except for the quantum Monte Carlo method
which is applicable to more complex systems. In
general, however, QMC methods have problems with
vibrationally excited states. Other methods that allow
the treatment of larger systems are based on some
kind of decoupling scheme, such as the time-depend-
ent Hartree or self-consistent field method. In the
multiconfiguration versions of these methods,382-384

the coupling is partially restored. If, in the future,
these methods will reach a sufficiently high level of
accuracy, they will become a tool for the spectroscopic
probing of intermolecular potentials for more complex
systems. Despite the high quality of the ab initio
potentials that have become available for quite a few
systems, we saw several examples where the use of
cluster spectroscopic data, due to their extremely
high precision and sensitive dependence on the
potential surface, made it possible to improve the ab
initio potential. Most progress is made in the study
of van der Waals molecules by the intensive and
stimulating collaboration between theoreticians and
experimentalists. Future theoretical work will in-
volve the extension to closed-shell systems of ever
increasing size and the explicit inclusion of the
intramolecular degrees of freedom and the coupling
between the intermolecular motions and the molec-
ular vibrations. Future developments will also con-
centrate more on open-shell systems, electronic ex-
citations, and chemical reactions in van der Waals
complexes, for which work is still rather scarce at
present.
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8. Appendix A
We will prove eq 3 of the main text. First we note

that xg ≡ w(q) is the volume element belonging to
the coordinates q. Since G is Hermitian and positive
definite, the weight function w(q) is real and positive.
For the sake of argument we restrict our attention
to the 1-dimensional case. We consider

and assume that [φ*(q)ψ(q)w(q)]q1

q2 ) 0. This gives

Hence

and thus

Multiplying by ip we find eq 3. Similarly, we can
derive

so that

and (p†)† ) p.

9. Appendix B
In this Appendix we define the Euler angles in an

algebraic manner and show that exactly three Euler
angles are needed to describe a rotation. In the usual
definition (‘rotate around the z-axis, then around the

new y-axis’, etc.) this fact relies on geometrical insight
and is strictly speaking not proved.

Consider the linear transformation from one or-
thonormal right-handed frame to another:

The matrix R is orthogonal: R ) RT and proper:
det ) 1. Write R ) (r1, r2, r3) and the properties of R
imply that the columns ri, i ) 1, 2, 3, form a right-
handed orthogonal set of unit vectors. We define the
rotation matrices:

Any proper orthogonal matrix R can be factorized
as a 3-fold product of these matrices:

The angles R, â, and γ are the Euler angles of the
frame (fBx, fBy, fBz) with respect to the frame (ebx, eby, ebz).

To prove the factorization we consider

The spherical polar angles â and R (0 e â e π, 0 e
2π) of r3 are determined in the usual way; from the
definition of the spherical polars follows that r3 )
a3. With R and â uniquely determined, also the
orthogonal unit vectors a1 and a2 are given uniquely.

Since a1, a2, and a3 are the columns of a proper
rotation matrix, they form an orthonormal right-
handed system. The plane spanned by a1 and a2 is
orthogonal to a3 ) r3 and hence contains r1 and r2.
Thus,

As a1, a2, and r1 are known unit vectors, we can
compute

These equations give γ, 0 e γ e 2π. Finally, because
of the block structure of Rz (γ)

Often one defines

and

〈φ|dψ
dq〉 ≡ ∫q1

q2
φ*(q)ψ(q)′w(q)dq with ψ(q)′ )

dψ(q)
dq

0 ) ∫q1

q2d(φ*ψw)
dq

dq ) ∫q1

q2
φ*ψ′wdq +

∫q1

q2ψ(φ*w)′dq ) ∫q1

q2
φ*ψ′wdq +

∫q1

q2w-1(φ*w)′ψwdq

∫φ*dψ
dq

wdq ) -∫w-1d(wφ)*
dq

ψwdq ≡

-〈w-1d(wφ)
dq |ψ〉

( d
dq)† ) -w-1 d

dq
w

∫φ*w-1d(wψ)
dq

wdq ) -∫dφ*
dq

ψwdq

(w-1 d
dq

w)† ) - d
dq

( fBx, fBy, fBz) ) (ebx, eby, ebz) R

Rz(æ) ≡ (cos æ -sin æ 0
sin æ cos æ 0
0 0 1 )

Ry(æ) ≡ (cos æ 0 sin æ
0 1 0
-sin æ 0 cos æ )

R ) Rz (R) Ry (â) Rz (γ)

Rz (R) Ry (â) ) (cos R cos â -sin R cos R sin â
sin R cos â cos R sin R sin â
-sin â 0 cos â )≡

(a1, a2, a3)

(r1, r2) ) (a1, a2) (cos γ -sin γ
sin γ cos γ ).

a1‚r1 ) cos γ and a2‚r1 ) sin γ

R ≡ (r1, r2, r3) ) (a1, a2, a3) Rz (γ) )
Rz (R) Ry (â) Rz (γ)

Rz′′ (γ) ≡ [Rz (R) Ry (â)] Rz (γ)[Rz (R) Ry (â)]-1

Ry′ (â) ≡ Rz (R) Ry (â) Rz (R)-1

van der Waals and Hydrogen-Bonded Complexes Chemical Reviews, 2000, Vol. 100, No. 11 4139



It is easy to see then that

The latter factorization corresponds to the geometric
definition of the Euler angles.

Another parametrization often used to describe
rotations uses a normalized vector h ) (hx, hy, hz) as
the rotation axis. The two polar angles of h give two
of the three required parameters. The third param-
eter is the angle ø over which the molecule is rotated.
It is easy to prove205 that

where

It is easily shown that

for any arbitrary vector r, where the expression on
the right-hand side denotes the cross product of two
vectors.
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(28) Mladenović, M. J. Chem. Phys. 2000, 112, 1070.
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(107) Chalasiński, G.; Szczȩśniak, M. M.; Cieplak, P.; Scheiner, S. J.
Chem. Phys. 1991, 94, 2873.

(108) van Duijneveldt-van de Rijdt, J. G. C. M.; van Duijneveldt, F.
B. Chem. Phys. 1993, 175, 271.

(109) van Duijneveldt-van de Rijdt, J. G. C. M.; van Duijneveldt, F.
B. Chem. Phys. Lett. 1995, 237, 560.

(110) Xantheas, S. J. Chem. Phys. 1994, 100, 7523.
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1995, 102, 4715.
(260) Droz, T.; Leutwyler, S.; Mandziuk, M.; Bačić, Z. J. Chem. Phys.
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